13 Formulae for Oscillations and Waves
The list of formulae below is the standard set of formulae made available for assessment.
13.1 Physical Constants
Constant | Value |
---|---|
Acceleration due to gravity | \(g = 9.81 \mathrm{\,m\,s}^{-2}\) |
Speed of light | \(c = 2.99 \times 10^8 \mathrm{\,m\,s}^{-2}\) |
Ideal gas constant | \(R = 8.31 \mathrm{\,J\,K}^{-1}\mathrm{\,mol}^{-1}\) |
Boltzmann constant | \(k_B = 1.38 \times 10^{-23} \mathrm{\,J\,K}^{-1}\) |
Avogadro constant | \(N_A = 6.02 \times10^{23} \mathrm{\,mol}^{-1}\) |
Stefan-Boltzmann constant | \(\sigma = 5.67 \times10^{-8} \mathrm{\,W\,m}^{-2}\mathrm{\,K}^{-4}\) |
Wien displacement constant | \(b = 2.897 \times 10^{-3} \mathrm{\,m\,K}\) |
Reduced Planck constant | \(\hbar = 1.05 \times 10^{-34} \mathrm{\,m}^2 \mathrm{\,kg\,s}^{-1}\) |
Planck constant | \(h = 6.63\times 10^{-34} \mathrm{\,m}^2 \mathrm{\,kg\,s}^{-1}\) |
Electron volt | \(1\,eV = 1.60 \times 10^{-19} \mathrm{\,J}\) |
Atomic mass unit (Dalton) | \(1\,u = 1.66\times 10^{-27} \mathrm{\,kg}\) |
13.2 Trigonometric Relationships
\(\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B\)
\(\tan(A \pm B) = \dfrac{\tan A \pm \tan B}{1\mp \tan A \tan B}\)
\(\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B\)
\(\cos^2 A + \sin^2 A = 1\)
\(\sin 2A = 2 \sin A \cos A\)
\(\cos A \cos B = \frac{1}{2} \left[ \cos(A+B) + \cos (A - B) \right]\)
\(\cos 2A = \cos^2 A - \sin^2 A\)
\(\sin A \cos B = \frac{1}{2} \left[ \sin(A+B) + \sin(A-B) \right]\)
\(\tan 2A = \dfrac{2 \tan A}{1 - \tan^2 A}\)
\(\sin A + \sin B = 2 \sin \dfrac{A+B}{2} \cos \dfrac{A-B}{2}\)
\(\cos A + \cos B = 2 \cos \dfrac{A+B}{2} \cos \dfrac{A-B}{2}\)
\(\sin A - \sin B = 2 \cos \dfrac{A+B}{2} \sin \dfrac{A-B}{2}\)
\(\cos A - \cos B = 2 \sin \dfrac{A+B}{2} \sin \dfrac{B-A}{2}\)
\(\cos^2 A = \frac{1}{2} (1+\cos 2A)\)
\(\sin^2 A = \frac{1}{2} (1-\cos 2A)\)
13.3 Oscillations
Undamped SHM: \(\dfrac{\textrm{d}^2 x}{\textrm{d} t^2} = -\omega^2 x\)
Solution: \(x = A_0 \cos (\omega t + \delta)\)
Energy: \(E_{\mathrm{total}} = \frac{1}{2} k A_0^2\)
Simple Pendulum \(T = 2\pi \sqrt{\frac{l}{g}}\)
Damped SHM: \(m \dfrac{\mathrm{d}^2 x}{\mathrm{d}t^2} + b \dfrac{\mathrm{d}x}{\mathrm{d}t}+ kx =0\)
Damped SHM Solution:
- Position \(x = A_0 e^{-\frac{t}{2\tau}} e^{i(\omega' t + \delta)}\)
- Characteristic decay constant \(\tau = \frac{m}{b}\)
- Damped frequency \(\omega' = \sqrt{\omega_0^2 - (b/2m)^2}\)
Critical damping: \(b = 2m\omega_0\)
Quality factor: \(Q = \omega_0 \tau = \dfrac{2\pi}{ \left( |\Delta E | / E \right)}\)
Forced SHM: \(m \dfrac{\mathrm{d}^2 x}{\mathrm{d}t^2} + b \dfrac{\mathrm{d}x}{\mathrm{d}t}+ kx = F_0 \mathrm{e}^{\mathrm{i}\omega t}\)
Solution:
Position \(x = A_0 \mathrm{e}^{- \left(\frac{b}{2m}\right)t} \mathrm{e}^{\mathrm{i} \left( \omega^\prime t + \delta^\prime \right)} + A e^{i(\omega t - \delta)}\)
where \(\delta = \arctan \left( \dfrac{b\omega}{m(\omega_0^2 - \omega^2)}\right)\)
Steady-state amplitude: \(A = \dfrac{F_0}{\sqrt{m^2 \left(\omega_0^2 - \omega^2 \right)^2 + b^2 \omega^2}}\)
Width (at half height) of resonance peak (\(\Delta \omega\)): \(\dfrac{\Delta \omega}{\omega_0} = \dfrac{1}{Q}\)
Coupled oscillator (\(n = 2\)):
\[ \begin{cases} \begin{array}{l} m_A \dfrac{\mathrm{d}^2 x_A}{\mathrm{d}t^2} = -(k_A + k_{AB}) x_A + k_{AB}x_B \\ m_B \dfrac{\mathrm{d}^2 x_B}{\mathrm{d}t^2} = -(k_B + k_{AB}) x_B + k_{AB}x_A \end{array} \end{cases} \]
Coupled Oscillator Solutions:
\[\begin{cases} x_1 = \frac{1}{2} B_1 \cos(\omega_1 t + \phi_1) + \frac{1}{2}B_2 \cos (\omega_2 t + \phi_2)\\ x_2 = \frac{1}{2} B_1 \cos(\omega_1 t + \phi_1) - \frac{1}{2}B_2 \cos (\omega_2 t + \phi_2)\\ \end{cases}\]
For \(m_A = m_B = m\) and \(k_A = k_B = k\):
\(\omega_1 = \sqrt{\dfrac{k}{m}}\) and \(\omega_2 = \sqrt{\dfrac{k + 2 k_{AB}}{m}}\)
Matrix representation:
\[ \left( \begin{array}{cc} m_A & 0 \\ 0 & m_B \end{array} \right) \left( \begin{array}{c} \frac{\mathrm{d}^2 x_A}{\mathrm{d}t^2} \\ \frac{\mathrm{d}^2 x_B}{\mathrm{d}t^2} \end{array} \right) = - \left( \begin{array}{cc} (k_A + k_{AB}) & -k_{AB} \\ -k_{AB} & (k_B + k_{AB}) \end{array} \right) \left( \begin{array}{c} x_A \\ x_B \end{array} \right) \]
13.4 Waves
Wave Equation: \(\dfrac{\partial^2 y}{\partial x^2} = \dfrac{\mu}{F} \dfrac{\partial^2 y}{\partial t^2}\)
Harmonic wave:
- Sinusoidal representation: \(y = A \sin (kx - \omega t)\)
- Complex representation \(y = Ae^{i(kx - \omega t)}\)
- De Moivres representation \(Ae^{i\omega t} = A(\cos \omega t + i \sin \omega t)\)
Phase Velocity: \(v_p = \dfrac{\omega}{k}\)
Group velocity: \(v_g = \dfrac{\partial \omega(k)}{\partial k}\)
For wave on a string:
- Phase velocity: \(v_p = \frac{\omega}{k} = \sqrt{F/\mu}\)
- Energy density: \(\epsilon = \frac{1}{2} \mu \omega^2 A^2\)
- Average power transmitted: \(P_{\mathrm{av}} = \frac{1}{2}\mu \omega^2 A^2 v\)
- Impedance: \(Z = \frac{Fk}{\omega}\)
Reflection and Transmission at Boundaries:
\(\dfrac{\mathrm{Reflected\,power}}{\mathrm{Incident\,power}} = \left( \dfrac{Z_1 - Z_2}{Z_1 + Z_2} \right)^2\)
\(\dfrac{\mathrm{Transmitted\,power}}{\mathrm{Incident\,power}} = \dfrac{4 Z_1 Z_2}{(Z_1 + Z_2)^2}\)
Intensity level: \(\beta = 10 \log_{10} \left( \dfrac{I}{I_0}\right)\)
- …where \(I_0 = 10^{-12} \mathrm{\,W\,m}^{-2}\)
Doppler shift: \(f^\prime = \left(\dfrac{v\pm u_r}{v \pm u_s} \right) f_0\)
Beats: \(y = 2y_0 \cos \left( \dfrac{\Delta kx - \Delta \omega t}{2} \right) \sin (k_{\mathrm{av}} x - \omega_{\mathrm{av}} t)\)