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Preface

Welcome to the course notes for the Oscillations and Waves component of
PHYS10012, Core Physics I.
The most recent version of these notes can be found at https://awmckinley1.github.
io/oscandwaves. Please ensure you are always working from the most up-to-date
version of these notes and compare the change-log with that on the live website.

About these notes
These notes have been prepared in a format which maintains compatibility with
screen-readers, while also allowing the facility for both PDF and EPUB downloads
for those who wish to use them.
The HTML also has themes to facilitate easier reading (font colours, serif/sans serif
fonts etc.). Please explore the top bar of the web environment to explore this.
The HTML notes allow for embedding of rich content (videos, animations, etc.),
and for this reason I recommend accessing the course using the web-links provided,
as these cannot be included in static PDF or EPUB documents. However, I will
ensure links are included in these formats as far as possible.
These notes are a “live document”, and as such they can (and will) be updated
should any erroneous explanations be found or additional explanations be needed.
For this reason, please do email me if you have any questions or if anything is not
clear.
The most recent version can always be found at the link at the top of this section,
and any changes are reflected in the change-log.
Please note that as this is a “live document”, a downloaded version can become
obsolete. Please refer back regularly and refer to the changelog for any updates.
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Error reporting
As much as we try, sometimes errors creep in. At best, it is little more than a
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seriously misleading the learner. For this reason I have created a feedback form to
report errors; this is accessible at the bottom of this page.

Course history
This iteration of the course has been written by Andrew McKinley for 2024; this
is extensively based on his delivery of the previous course from 2021-23, which in
turn was adapted from previous course notes by Ben Maughan, Simon Hanna and
Massimo Antognozzi.

Changelog
2024-02-20 Updated Section 8.5 (Dispersion) and Section 11.3 (Superposition and
Beats) ; verifying and fixing problem with Figure 8.4 (RA)
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ch10-phasors1)
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2024-02-12 Fixing equation number error on Equation 7.15
2024-02-09 Fixing subscript typos in matrices in Section 4.8.2
2024-02-07 Fixing subscript typo in Section 6.3.2
2024-02-07 Fixing: Errors in Equation 1.2 (OD), Section 1.7 (OD); Section 3.3
(LK); Homogenising nomenclature in Section 6.1.
2024-01-26 Removing blank section
2024-01-24 Fixing PDF and image 1.7 (this has been particularly difficult!) (DBW)
2024-01-11 Initial creation of the Oscillations and Waves content for PHYS10012.
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Chapter 1

Simple Harmonic Motion

Simple harmonic motion (SHM) is a simple and common type of oscillatory motion.
It is a model which is widely used in modelling systems due to its simplicity.
In general, an object will move under SHM where its acceleration is:

1. proportional to its displacement, but
2. in the opposite direction.

The force causing this acceleration is often termed a restoring force as it acts to
push the object back to its starting point.

1.1 A simple example of SHM
Consider a block on a spring (Figure 1.1)

m

0

Equilibrium


1

Figure 1.1: A mass on a spring, stretched distance 𝑥 past its equilibrium length 𝑥0

By Hooke’s law, the spring exerts a force on the block proportional to its displace-
ment 𝑥, but in the opposite direction, pushing the block back to its equilbrium
position, shown mathematically in Equation 1.1:

𝐹𝑥 = −𝑘𝑥 (1.1)
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In this example, 𝐹𝑥 is considered a restoring force, while 𝑘 is the force constant
of the spring.
Applying Newton’s Second Law to this problem, we can obtain the mathematical
description of the system (Equation 1.2):

𝐹𝑥 = 𝑚𝑎𝑥

−𝑘𝑥 = 𝑚d2𝑥
d𝑡2

(1.2)

… and through rearrangement and combination with Equation 1.1 we obtain the
description of how this mass will move (Equation 1.3):

d2𝑥
d𝑡2 = − 𝑘

𝑚𝑥 (1.3)

The general form of this expression for any system can be considered as shown in
Equation 1.4:

d2𝑥
d𝑡2 = −𝐶𝑥 or ̈𝑥 = −𝐶𝑥 (1.4)

…where 𝐶 is a positive constant which depends on the system and represents a ratio
of the elastic (𝑘) and inertial (𝑚) contributions within the system.

Key Terms

• Period: The time 𝑇 for one complete oscilation back and forth (units
s)

• Frequency: The reciprocal of the period; 𝑓 = 1
𝑇 , units s-1 or Hz.

1.2 Positioning in SHM
SHM can be described by a general equation of motion, defining the position (𝑥)
of the oscillating mass using a cosine function (Equation 1.5):

𝑥 = 𝐴 cos(𝜔𝑡 + 𝛿) (1.5)

The parameters in this equation are:
• 𝐴: The amplitude of the oscillation
• 𝜔𝑡 + 𝛿: Phase of motion
• 𝛿: Phase constant
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For any single oscillator, the time origin can always be chosen so that 𝛿 = 0. For
two or more oscillators there will generally be a phase difference between them i.e.
they will not always be at the same ‘zero’ position at time zero in Figure 1.2:

0 2 4 6 8 10
Time, t

4

2

0

2

4
Di

sp
la

ce
m

en
t, 

x
Phase shift, = 2 rad

Figure 1.2: The changing position of two oscillators with respect to time, with a
relative phase shift of 2 radians.

1.3 Velocity in SHM
To find the velocity of the oscillating mass, we can simply find the first derivative
of its position with respect to time (Equation 1.6):

𝑣 = d𝑥
d𝑡

= −𝐴𝜔 sin(𝜔𝑡 + 𝛿) (1.6)

A quick inspection of this shows that the velocity 𝑣 is maximised when 𝑥 is at a
minimum; i.e. as the object passes through its equilibirum position.

1.4 Acceleration in SHM
Again, to find the acceleration, we find the second derivative of its position with
respect to time (Equation 1.7):

𝑎 = d𝑣
d𝑡 = d2𝑥

d𝑡2

= −𝐴𝜔2 cos(𝜔𝑡 + 𝛿) (1.7)

…or, to use the Newtonian “dot” notation (Equation 1.8):

𝑎 = ̈𝑥 = −𝜔2𝑥 (1.8)

If we now compare this with Equation 1.3 we can see that we have an expression
for 𝜔 for the oscillating mass 𝑚 on a spring of force constant 𝑘 (Equation 1.9):
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𝜔2 = 𝑘
𝑚

𝜔 = √ 𝑘
𝑚

(1.9)

1.5 Comparing displacement, velocity and acceler-
ation

When we now compare the displacement, velocity and acceleration we make a
number of observations. Firstly, they are all sinusoidal functions; variously sine and
cosine functions. However, when we overlay these we have a better indication of
how they interrelate (Figure 1.3)

x

t

A

v

t

A

a

t

A 2

Figure 1.3: Comparing the changes of position, velocity and acceleration with time
for a harmonic oscillator. Note that when 𝑥 is at zero, 𝑣 is maximised, while 𝑎 is at
a maximum when 𝑣 is zero. The relative amplitudes of each of the waves is given.

Some key observations

• When the displacement 𝑥 is at a maximum (𝑥max), the velocity 𝑣 is zero
while the acceleration is at its maximum but negative with respect
to displacement (𝑎 = −𝑎max)

• When the displacement 𝑥 is zero, the velocity 𝑣 is at its maximum value
(𝑣 = ±𝑣max) and the acceleration is zero.

• The pattern repeats with each period; namely 𝑥0 (displacement at time
𝑡 = 0) is equal to the displacement 𝑥𝑇 (displacement after one period
of oscillation, 𝑇 ), and the same for the acceleration and velocity.

• In general, 𝑥𝑡 = 𝑥𝑡+𝑇 ; the displacement at time 𝑡 is equal to the
displacement at the time 𝑡 plus one period of oscillation, 𝑇 .
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We can directly compare the displacement, velocity and acceleration at four points
in the oscillation (Table 1.1):

Table 1.1: Relating the displacement, velocity and acceleration at different times in
the oscillation for a simple harmonic oscillator.

Time Displacement, 𝑥 Velocity, 𝑣 Acceleration, 𝑎
𝑡 = 0 𝑥0 = 𝐴 𝑣0 = 0 𝑎0 = −𝑎max
𝑡 = 𝑇

4 𝑥 𝑇
4

= 0 𝑣 𝑇
4

= −𝑣max 𝑎 𝑇
4

= 0
𝑡 = 𝑇

2 𝑥 𝑇
2

= −𝐴 𝑣 𝑇
2

= 0 𝑎 𝑇
2

= 𝑎max
𝑡 = 3𝑇

4 𝑥 3𝑇
4

= 0 𝑣 3𝑇
4

= 𝑣max 𝑎 3𝑇
4

= 0
𝑡 = 𝑇 𝑥𝑇 = 𝑥0 = 𝐴 𝑣𝑇 = 𝑣0 = 0 𝑎𝑇 = 𝑎0 =

−𝑎max

1.6 Initial conditions
We mentioned in Section 1.5 that the displacement, velocity and acceleration ex-
pressions were based on sinusoial functions, and each function had a scaling factor
𝐴 (the amplitude of the oscillation) and a phase component 𝛿. In most problems,
we wish to determine the value of these constants. In order to determine these, we
establish the initial conditions of the oscillation.
In Figure 1.3 we defined our displacement at +𝐴 which set up the rest of the
problem. However, we will not always be so fortunate. For a general case, we then
need to be more discerning.
We can establish expressions for both the amplitude and the phase component by
setting 𝑡 = 0 in our general expressions (Equation 1.10):

𝑥𝑡 = 𝐴 cos(𝜔𝑡 + 𝛿) → 𝑥0 = 𝐴 cos(𝛿)
𝑣𝑡 = −𝐴𝜔 sin(𝜔𝑡 + 𝛿) → 𝑣0 = −𝐴𝜔 sin(𝛿) (1.10)

We now treat these as simultaneous equations to find 𝛿 and 𝐴 (Equation 1.11)1:

tan 𝛿 = sin 𝛿
cos 𝛿 = − 𝑣0

𝜔𝑥0
and 𝐴2 = 𝑥2

0 + 𝑣2
0

𝜔2 (1.11)

1.7 Frequency and angular frequency
In Section 1.5 we stated that the nature of the oscillation meant that it repeats
after every oscillation; mathematically 𝑥(𝑡) = 𝑥(𝑡 + 𝑇 ); the position 𝑥 at time 𝑡 is
equal to the position at time (𝑡 + 𝑇 ).

1Note that we use the trigonometric identity cos2 𝛼 + sin2 𝛼 = 1 to find 𝐴
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When we apply this to the position, we obtain the following expression:

𝑥(𝑡) = 𝑥(𝑡 + 𝑇 )
𝐴 cos(𝜔𝑡 + 𝛿) = 𝐴 cos(𝜔(𝑡 + 𝑇 ) + 𝛿)

= 𝐴 cos([𝜔𝑡 + 𝛿] + 𝜔𝑇 )

Due to the cyclic nature of a cosine function, cos(𝛼) = cos(𝛼 + 2𝜋), this must
therefore mean (Equation 1.12):

𝜔𝑇 = 2𝜋 or 𝜔 = 2𝜋
𝑇 (1.12)

This gives us a way to think about 𝜔; its connection to circular motion (the clue
is the 2𝜋). It can be thought of as the angular frequency, with units radians s-1,
and an oscillation of 2𝜋 radians corresponds to one period of oscillation.
Additionally, since the frequency of the oscillation 𝑓 is the reciprocal of the period
of oscillation (𝑓 = 1

𝑇 ), the angular frequency can be rewritten as 𝜔 = 2𝜋𝑓 , and
𝑓 = 𝜔

2𝜋 .
For the spring system we discussed in Section 1.1, we stated that the angular
frequency 𝜔 = √ 𝑘

𝑚 . Therefore we can obtain an expression for the frequency of
our oscillator (Equation 1.13):

𝑓 = 1
𝑇 = 1

2𝜋
√ 𝑘

𝑚 (1.13)

Inspection of this equation reveals the behaviour of our oscillator:
• If we have a stiffer spring (larger 𝑘), we expect the frequency 𝑓 to increase,
• If we use an oscillator with larger mass (larger 𝑚), we would expect the

frequency (𝑓) to decrease.
• The frequency (and therefore period) of simple harmonic oscillation is inde-

pendent of amplitude.2

1.8 SHM and circular motion
We mentioned an “angular frequency” for SHM; this would appear to suggest be-
haviour akin to circular motion. It is therefore worth exploring our descriptions of
circular motion.
Imagine a point mass moving in a circle (Figure 1.4). For convenience, we imagine
this using Cartesian 𝑥 − 𝑦 axes, shown in Figure 1.4.

2A caveat to this is for large amplitudes where other factors start to affect the behaviour. But
this is then no longer simple harmonic motion!
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Figure 1.4: A particle moving in a circle of radius 𝐴 can be assumed to have an
instantaneous linear velocity 𝑣. The 𝑥 and 𝑦 components of the motion are found
from trigonometry of the radius 𝐴 and the angle 𝜃.
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The particle of mass 𝑚 is moving in a circle of radius 𝐴 with instantaneous linear
velocity 𝑣; the radius makes an angle 𝜃 with the 𝑥-axis. We now look at how its
position maps onto each of the axes:

• The angular velocity of the particle is 𝜔; found via 𝑣
𝐴

– We can then describe 𝜃 in terms of 𝜔:
– 𝜃 = 𝜔𝑡 + 𝛿 (𝛿 is the angle at time 𝑡 = 0)

• The particle’s position on the 𝑥-axis is therefore found via:
– 𝑥 = 𝐴 cos 𝜃 = 𝐴 cos(𝜔𝑡 + 𝛿)
– This corresponds with the expression for SHM for a particle moving in a

linear fashion (Equation 1.5).
We can also consider how its position maps onto the 𝑦-axis:

• The position on the 𝑦-axis is found via:
– 𝑦 = 𝐴 sin 𝜃 = 𝐴 sin(𝜔𝑡 + 𝛿) ≡ 𝐴 cos(𝜔𝑡 + [𝛿 − 𝜋

2 ])
– This once again corresponds with the expression for SHM for a particle

moving in a linear fashion.
– The 𝑦-component of the motion is 𝜋

2 out of phase with the 𝑥-component
This illustrates that circular motion is a combination of two perpendicular SHM
oscillations of the same frequency and amplitude, but a relative phase of 𝜋

2 .

1.9 Energy in SHM
As with all isolated systems, the total energy 𝐸 of the simple harmonic oscillator
is constant, however the contributions from potential energy (𝑈) and KE vary with
time.

𝐸 = 𝐾𝐸 + 𝑈 = constant

Let’s go back to the condition for SHM; there is a restoring force proportional to
the displacement:

𝐹 = −𝑘𝑥

Knowing that the force is the first derivative of the potential energy, we can there-
fore integrate this force expression (with respect to 𝑥) to get back to the energy
statement:3

𝑈 = ∫ 𝐹d𝑥
= 1

2𝑘𝑥2 [+𝐶] (1.14)

3The constant of integration will evaluate to zero from the starting condition 𝑈 = 0 at zero
displacement.
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However, we already have an expression for how the displacement, 𝑥, varies with
time (Equation 1.5); let’s now substitute this into the result from Equation 1.22:

𝑈 = 1
2𝑘𝐴2 cos2(𝜔𝑡 + 𝛿) (1.15)

We can also generate an expression for the kinetic energy; remember that kinetic en-
ergy can be found from 1

2𝑚𝑣2; so we use the expression for 𝑣 given in Equation 1.6:

𝐾𝐸 = 1
2𝑚𝑣2

= 1
2𝑚𝐴2𝜔2 sin2(𝜔𝑡 + 𝛿) (1.16)

We can simplify this using Equation 1.7 for a particle on a spring, where 𝜔2 = 𝑘
𝑚 :

𝐾𝐸 = 1
2𝑘𝐴2 sin2(𝜔𝑡 + 𝛿) (1.17)

Combining the result of Equation 1.15 and Equation 1.17 we find the result in
Equation 1.18:

𝐸total = 𝑈 + 𝐾𝐸
= 1

2𝑘𝐴2 cos2(𝜔𝑡 + 𝛿) + 1
2𝑘𝐴2 sin2(𝜔𝑡 + 𝛿)

= 1
2𝑘𝐴2 [cos2(𝜔𝑡 + 𝛿) + sin2(𝜔𝑡 + 𝛿)]

= 1
2𝑘𝐴2

(1.18)

This result tells us that the total energy in a simple harmonic oscillation is propor-
tional to the square of the amplitude.

Some points to bear in mind

• 𝑈 = 𝑈max at 𝑥 = ±𝑥max
• 𝐾𝐸 = 𝐾𝐸max at 𝑥 = 0
• 𝑈average = 𝐾𝐸average = 1

2𝐸total

1.10 SHM in Real Systems
Textbook link: Tipler and Mosca: Ch 14.2 to 14.4
We will now go on to look at some applications of SHM in real-world systems.
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Figure 1.5: Variation of the kinetic energy (KE) and potential energy (U) of an
harmonic oscillator with displacement 𝑥 about the equilibrium position.

1.10.1 General motion near equilibrium
A way of thinking about SHM is that it is a point mass oscillating within a potential
energy field. As with any potential energy field, the force on this particle is given
by the gradient of the potential energy and is directed down the potential energy
slope. Mathematically, for a potential energy field, the force may be found as follows
(Equation 1.19):

𝐹 = −d𝑈
d𝑟 (1.19)

In a one-dimensional system, this is expressed as follows (Equation 1.20):

𝐹𝑥 = −d𝑈
d𝑥 (1.20)

As mentioned in Section 1.1, under SHM the force is proportional to the displace-
ment from the equilibrium position and in the opposite direction; i.e.:

𝐹𝑥 = −𝑘𝑥 (1.21)

Applying the principle from Equation 1.19 we can therefore integrate this experession
with respect to 𝑥 to obtain the expression for our potential energy. We covered this
in Section 1.9, and we found the result (Equation 1.22); remember that, due to
initial conditions, the constant of integration reduces to zero).
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𝑈 = 1
2𝑘𝑥2 (1.22)

Simple inspection and recall of our mathematics knowledge tells us that this simple
equation represents a parabola.

Some useful points on the harmonic oscillator

• A parabolic potential energy function implies SHM and vice versa;
• For small amplitudes of oscillation, many potential energy functions may

be approximated by a parabola (e.g. a pendulum, vibrating molecules)
• A system undergoing SHM is called a harmonic oscillator.

The simplicity of the simple harmonic oscillator model is what makes it such a
generally useful system to consider.

1.10.2 Example: a diatomic molecule
A diatomic molecule is a useful system to consider as an example because it can be
approximated to a harmonic oscillator at small displacements about the equilibrium.
The potential energy curve for a vibrating diatomic molecule (in this case the H2
hydrogen molecule) is shown in Figure 1.6.

0.6 0.8 1.0 1.2 1.4
6

4

2

0

2

4

6
Anharmonic oscillator
Harmonic oscillator

Figure 1.6: Comparing the Morse potential of the anharmonic oscillator with the
harmonic approximation. Near equilibrium, the harmonic oscillator model approxi-
mates diatomic behaviour, however this rapidly deviates from reality.

The potential of a vibrating diatomic is known as the Morse potential; the form of
this is outwith this discussion, however it is useful to think that, for small displace-
ments around the equilibrium separation the potential energy curve approximates a
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parabola. We can therefore re-draw our potential energy curve as such, and show
this in Figure Figure 1.7).4

r0 rbr r

Vharmonic

1Figure 1.7: The parabolic approximation of a diatomic molecule, showing the po-
tential varying with compression or extension from equilibrium separation, 𝑟0.

The equation of the parabola shown in Figure 1.7 takes the following form:

𝑈(𝑟) = 𝐴 + 𝐵(𝑟 − 𝑟0)2 (1.23)
…where 𝐴 and 𝐵 are constants relating to the molecular system under consideration,
and 𝑟0 is the equilibrium bond length.
The force on the bond can then be found from the first derivative of the bond
potential described in Equation 1.23:

𝐹𝑟 = −d𝑈
d𝑟

= −2𝐵(𝑟 − 𝑟0)
(1.24)

Since the term (𝑟 − 𝑟0) is the displacement from the equilibrium position, we see
that the force, 𝐹𝑟 is a restoring force and is proportional to the displacement
(and in the opposite direction!), telling us that the motion is SHM. In this example
however, the parabolic approximation fails at larger amplitudes.

4Simplistically, the deviation is due to nuclear repulsion at high compression, while at large
extension the bond eventually breaks - the “zero potential” point.
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1.10.3 Example: Mass on a vertical spring
In Section 1.1 we considered a mass on a horizontal spring; there was only a single
force acting on the mass (the force from the spring), however we are now considering
a vertical spring and must consider the effects of gravity (Figure 1.8).

m

m

Equilibrium

(no mass)

Equilibrium

(with mass)

Maximum

amplitude

(a) (b) (c)

y0 =
mg
k

y

y0

y′

1

Figure 1.8: A particle oscillating on a vertical spring. There are two equilibrium
positions corresponding to the equilibrium position of the unladen spring (a) and
the equilibrium position of the mass loaded on spring (b), where the weight of the
load is balanced by the force from the extended spring.

In this case we need to work through a slightly different process to find the equation
of motion, chiefly because the equilibrium displacement of the mass (𝑦0) is different
from the equilibrium position of the spring.
The equilibrium position of the mass 𝑦0 is lower than the equilibrium extension
of the spring (gravity on the mass causes the spring to stretch). This is found
by relating the force from the spring and the force of gravity acting on the mass
(Equation 1.25):

Force due to spring extension = Gravity acting on mass
𝑘𝑦0 = 𝑚𝑔
𝑦0 = 𝑚𝑔

𝑘
(1.25)

We now apply the Second Law of motion to obtain an expression for the acceleration
on the mass due to the forces acting on it (the spring force and gravity).
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𝑚 ̈𝑦 = spring force + gravity

𝑚d2𝑦
d𝑡2 = −𝑘𝑦 + 𝑚𝑔 (1.26)

In this expression, 𝑦 is the total extension of the spring (the extension to the mass
equilibrium point, 𝑦0 plus the displacement from this point, 𝑦′).
We now substitute a variable; since 𝑦 = 𝑦0 + 𝑦′, we substitute 𝑦 for 𝑦′:

• 𝑦 = 𝑦0 + 𝑦′

• 𝑦′ = 𝑦 − 𝑦0

Since 𝑦0 is a constant:

d𝑦′

d𝑡 = d𝑦
d𝑡 and d2𝑦′

d𝑡2 = d2𝑦
d𝑡2

Replacing 𝑦 for (𝑦0 + 𝑦′) in Equation 1.26, we obtain Equation 1.27:

𝑚d2𝑦′

d𝑡2 = −𝑘(𝑦0 + 𝑦′) + 𝑚𝑔 (1.27)

Since 𝑘𝑦0 = 𝑚𝑔 (Equation 1.25), we can therefore eliminate these terms from
Equation 1.27, and rewrite as Equation 1.28):

𝑚d2𝑦′

d𝑡2 = −𝑘𝑦′ (1.28)

This means that, in reference to Figure 1.8, we still have SHM centered on the
equilibrium position of the mass. This may seem like a self-evident result, however
it is useful to recognise the role of gravity; its effect is to shift the equilibrium
position of the oscillation from 𝑦 = 0 (the equilibrium position of the spring) to
𝑦 = 𝑦0 (𝑦′ = 0).
Let’s now consider the energy in this system. The system already contains some
elastic energy as the spring is already stretched to 𝑦0 by the gravity acting on the
mass:

elastic potential energy = 1
2𝑘𝑦2 − 1

2𝑘𝑦2
0

The gravitational potential energy (relative to the starting position 𝑦0) is given by:

gravitational potential energy = 𝑚𝑔(𝑦 − 𝑦0)
The total potential energy is therefore given by Equation 1.29:

𝑈 = 1
2𝑘𝑦2 − 1

2𝑘𝑦2
0 − 𝑚𝑔(𝑦 − 𝑦0) (1.29)
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We can then show that the total potential energy expression in Equation 1.29 can
be simplified to that shown in Equation Equation 1.30:

𝑈 = 1
2𝑘𝑦′2 (1.30)

You should ensure you understand how this simplification is done; this is left
as an exercise.5

Overall, the expression for the total potential energy shown in Equation 1.30 will
still yield a parabola and as such the oscillation is still a simple harmonic oscillation
as before.

5Yes; we know this sort of thing infuriates learners, however it is based in valid educational
practice! Do give it a go. In this instance, remember that you will need to start with Equation 1.29,
recall the relation of 𝑦 and 𝑦′, substitute this into the equation, expand and cancel terms.
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Chapter 2

Damped oscillations

Textbook link
The oscillations we have looked at so far make the assumption that the oscillation
will continue indefinitely and that no energy is gained or lost by the system. Such
perpetually oscillating systems are extremely unusual, and almost every oscillation
you encounter in the real world will lose energy to its surroundings, either requiring
constant input of energy to maintain the oscillation or it will eventually dissipate
all of its energy and the oscillation will stop. The energy is dissipated through a
process known as ‘damping’.
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Figure 2.1: The amplitude of a damped oscillation decays exponentially with time.
The observed position of the oscillation is shown in blue, while the maximum possible
amplitude (related to energy stored in the system) is illustrated by the orange dotted
line. The undamped oscillation is shown in grey for comparison.

The change in amplitude of a damped oscillation is illustrated in Figure 2.1. Both
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amplitude and energy decrease by a constant percentage in each cycle; this is an
exponential decrease.

2.1 The general case of damping
For a simply damped system, the damping force is proportional to the velocity of
the oscillating mass and opposes the direction of motion (Equation 2.1):

𝐹 = −𝑏𝑣 ≡ −𝑏d𝑥
d𝑡 (2.1)

This expression for the damping force can then be included with the equation for
the force from the spring (Equation 1.1) to consider the overall acceleration of a
mass undergoing damped harmonic motion. (Equation 2.2).

𝐹 = −𝑘𝑥 − 𝑏𝑣 = −𝑘𝑥 − 𝑏d𝑥
d𝑡 = 𝑚𝑎

𝑚d2𝑥
d𝑡2 = −𝑘𝑥 − 𝑏d𝑥

d𝑡
(2.2)

This can be written as a differential equation for damped SHM as shown in Equa-
tion 2.3:

𝑚d2𝑥
d𝑡2 + 𝑏d𝑥

d𝑡 + 𝑘𝑥 = 0 (2.3)

Let’s now try to find a solution for this differential equation. Firstly, let’s make a
couple of assumptions:

1. The amplitude of the damped oscillation is subject to an exponential decay
over a timescale of 2𝜏 (don’t worry about the factor of 2 for now), and

2. The damped oscillation has a frequency 𝜔′ which may be different from the
natural frequency of the undamped oscillator, 𝜔0.

Our exponential decay factor then becomes e− 𝑡
2𝜏 , and the exponential form of the

wave equation becomes ei(𝜔′𝑡+𝛿) (combination of Equation 1.5 and Equation 12.11).
When these are combined we obtain a form of the solution shown in Equation 2.4

𝑥 = 𝐴0e− 𝑡
2𝜏 ei(𝜔′𝑡+𝛿) (2.4)

We can now find the first and second derivatives (make sure you are able to do this;
you will need the product rule for differentiation) of this expression to substitute
into the differential equation (Equation 2.3):
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d𝑥
d𝑡 = (− 1

2𝜏 + i𝜔′) 𝑥
d2𝑥
d𝑡2 = (− 1

2𝜏 + i𝜔′)
2

𝑥
(2.5)

We can now take our derivatives shown in Equation 2.5) and substitute into the
differential equation (Equation 2.3)):

𝑚d2𝑥
d𝑡2 + 𝑏d𝑥

d𝑡 + 𝑘𝑥 = 0

𝑚 (− 1
2𝜏 + i𝜔′)

2
𝑥 + 𝑏 (− 1

2𝜏 + i𝜔′) 𝑥 + 𝑘𝑥 = 0
(2.6)

Multiplying this expression out, we obtain:

𝑚 ( 1
4𝜏2 − i𝜔′

𝜏 − 𝜔′2) 𝑥 + 𝑏 (− 1
2𝜏 + i𝜔′) 𝑥 + 𝑘𝑥 = 0

…and we can now combine the Real and Imaginary components:
• Imaginary:

−𝜔′𝑚
𝜏 + 𝜔′𝑏 = 0

𝜏 = 𝑚
𝑏 (2.7)

• Real:

( 1
4𝜏2 − 𝜔′2) 𝑚 − 𝑏

2𝜏 + 𝑘 = 0

Therefore (using result from Equation 2.7):

𝜔′2 = 𝑘
𝑚 − ( 𝑏

2𝑚)
2

However, we already know that 𝑘
𝑚 = 𝜔2

0 (Equation 1.9), so:

𝜔′2 = 𝜔2
0 − ( 𝑏

2𝑚)
2

(2.8)

Having found this result, we can now say that a general solution to damped SHM
is as shown in Equation 2.4, or in trigonometric notation as shown in Equation 2.9:
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𝑥 = 𝐴0e− 𝑡
2𝜏 cos(𝜔′𝑡 + 𝛿) (2.9)

…where
• 𝐴0 = initial (maximum) amplitude
• 𝜏 = 𝑚

𝑏 is the characteristic decay time or time constant

• 𝜔′ = √𝜔2
0 − ( 𝑏

2𝑚)2, where 𝜔0 is the frequency of the undamped oscillator (
𝜔2

0 = 𝑘
𝑚 for a mass on a spring)

Having derived and defined a general expression for damped oscillations, we will
now turn to look at different modes of damping.

2.2 Light Damping
In a system which is lightly damped, we can make a number of assumptions:

1. That the frequency of the damped oscillator (𝜔′) is approximately equal to
that of the undamped oscillator; 𝜔′ ≈ 𝜔0

2. That the damping factor, 𝑏
2𝑚𝜔0

is significantly less than one; i.e. 𝑏
2𝑚𝜔0

≪ 1
When we apply these assumptions to Equation 2.4 we obtain the “standard” SHM
oscillation (tending towards ei(𝜔′𝑡+𝛿) as 𝜔′ tends to 𝜔0) with an exponential decay
on its amplitude (Equation 2.10):

𝐴 = 𝐴0e− 𝑡
2𝜏 (2.10)

The effect of this light damping is that if 𝑏 (the damping coefficient on the velocity,
Equation 2.1 increases, the damped frequency 𝜔′ will decrease, and the character-
istic decay time, 𝜏 will also decrease.

2.3 Critical damping
In a critically damped system, the system does not oscillate; rather, it returns
to equilibrium in the shortest possible time. This can be imagined as the damp-
ing required to exactly stop the vibration and no more. The damped oscillation
frequency 𝜔′ then, by definition, is equal to zero (𝜔′ = 0) and, by placing this
condition into Equation 2.11, we obtain the result for the damping coefficient, 𝑏
(Equation 2.12):

𝜔′ = √𝜔2
0 − ( 𝑏

2𝑚)
2

(2.11)

𝑏 = 𝑏𝑐 = 2𝑚𝜔0 (2.12)
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2.4 Overdamping
An overdamped system is one which has so much damping applied that the system
returns to equilibrium even more slowly than in the critically damped case (Sec-
tion 2.3). This could be imagined as a mass on a spring which is allowed to return
to equilibrium within an extremely viscous medium (honey, or treacle!) and takes
a considerable time to slowly return to equilibrium. A comparison of the displace-
ment/time curve between a critically damped system and an overdamped system is
shown in Figure 2.2.
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Figure 2.2: A critically damped system returns to its equilbrium position in the
shortest possible time, while an overdamped system works against an overbearing
damping force slowly returning it to its equilibrium position.

In the overdamped case, the damping coefficient, 𝑏 is greater than the critical
damping coefficient, 𝑏𝑐:

𝑏 > 𝑏𝑐

2.5 Quality factor and energy in damped SHM
Recall that we determined energies within SHM in Equation 1.17 and Equation 1.18;
remembering that 𝜔2 = 𝑘

𝑚 , we can write the overall energy of the system as in
Equation 2.13:

𝐸 = 1
2𝑚𝜔2𝐴2 (2.13)

Within the damped regimes we have established the equations for damping, in
particular how to calculate the damped amplitude at a given time, 𝐴 (Equation 2.10).
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By combining this with Equation 2.13 we can obtain an expression for the damped
energy, 𝐸, as a proportion of the initial energy of the system, 𝐸0 (Equation 2.14):

𝐸 = 1
2𝑚𝜔2 (𝐴0e− 𝑡

2𝜏 )2

= 𝐸0e− 𝑡
𝜏

(2.14)

The decay time 𝜏 can now be considered the time taken for the energy to decrease
to 1

e of its original value (see? There was a reason we considered the timescale 2𝜏
in Section 2.1!).
A useful measure of the persistence of an oscillation is the quality factor, 𝑄. This
is defined as shown in Equation 2.15:

𝑄 = 𝜔0𝜏 = 𝜔0𝑚
𝑏 (2.15)

Generally:
• Large 𝑄 represents lighter damping, persistent oscillation. (think high quality

oscillation)
• Small 𝑄 represents heavier damping, oscillation stops rapidly. (think low

quality oscillation)
𝑄 can relate to the energy loss per cycle of oscillation; firstly define the rate of
change of energy (Equation 2.16, from Equation 2.13):

d𝐸
d𝑡 = −𝐸0

𝜏 e− 𝑡
𝜏 = −𝐸

𝜏 (2.16)

If we are considering finite changes, we can adapt our calculus to allow Δ𝐸 ≈ d𝐸
and Δ𝑡 ≈ d𝑡 = 𝑇 . Applying this to Equation 2.16 and rearranging gives:

|Δ𝐸|
𝐸 = 𝑇

𝜏 = 2𝜋
𝜔0𝜏 = 2𝜋

𝑄

This gives us the result for 𝑄 shown in Equation 2.17:

𝑄 = 2𝜋
( |Δ𝐸|

𝐸 )
cycle

(2.17)

This gives us one more way to consider the quality factor: it is inversely propor-
tional to the fractional energy loss per cycle of the oscillation. A low 𝑄 therefore
corresponds to a higher fractional energy loss per cycle than a high 𝑄 factor.
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Chapter 3

Forced oscillations

Textbook link: Tipler and Mosca 14.5
In Chapter 2) we explored the effect of damping on a system and we said that every
system in the real world is, to a greater or lesser extent, a damped system in which
energy is lost (dissipated) to the surroundings. In order to maintain the amplitude
of any oscillation we must supply energy to the system at the same rate as it is lost
to the surroundings; for example, pushing a child on a swing.
The equation for forced SHM is given in Equation 3.1:

𝑚d2𝑥
d𝑡2 + 𝑏d𝑥

d𝑡 + 𝑘𝑥 = 𝐹0ei𝜔𝑡 (3.1)

Compare this to Equation 2.3 for damped SHM; we have now applied an oscillating
force represented as 𝐹0ei𝜔𝑡, with an amplitude of 𝐹0 and frequency 𝜔. Note that this
driving frequency 𝜔 is different to the natural undamped frequency of the oscillator,
𝜔0 = √ 𝑘

𝑚 and different again to the frequency of the damped unforced oscillator,

𝜔′ = √𝜔2
0 − 𝑏2

4𝑚2 .

Any forced oscillation consists of two distinct regimes:
1. An initial transient period during which the oscillations are established, and
2. A steady state period during which the oscillations have constant amplitude

and a frequency equal to the driving frequency, 𝜔.
The general solution of the equation for forced SHM shown in Equation 3.1 is a
combination of these two regimes.
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3.1 The Transient Solution
The solution to the transient component of the forced oscillator is identical to the
solution of damped SHM (i.e. Equation 3.1 with the right-hand side set to zero;
identical to Equation 2.3). Its solution is shown in Equation 3.2:

𝑥 = 𝐴0e−( 𝑏
2𝑚 )𝑡ei(𝜔′𝑡+𝛿′)

or: 𝑥 = 𝐴0e−( 𝑏
2𝑚 )𝑡 cos (𝜔′𝑡 + 𝛿′) (3.2)

This contribution to motion establishes the oscillation, but rapidly decays with time
constant 𝜏 = 𝑚

𝑏 . The term 𝛿′ is simply the phase constant for this transient
oscillation.

3.2 The Steady State solution
Once in the steady state, the energy which is put into the system during each cycle
is equal to the energy dissipated per cycle due to the damping in the system. If
there is no damping of the system, energy keeps being added to the system and the
amplitude will increase indefinitely. This is not a steady state, and is an unphysical
result. The frequency then of this ‘driven’ oscillator in the steady state is equal to
the driving frequency.
The amplitude (and hence the energy) of the system in the steady state depends
on both the amplitude and the frequency of the driving force. For a steady state,
the solution to Equation 3.1 is in the form shown in Equation 3.3:

𝑥 = 𝐴ei(𝜔𝑡−𝛿) (3.3)

The terms 𝐴 and 𝛿 are defined in Equation 3.4 and Equation 3.5 below:

𝐴 = 𝐹0

√𝑚2 (𝜔2
0 − 𝜔2)2 + 𝑏2𝜔2

(3.4)

𝛿 = arctan ( 𝑏𝜔
𝑚 (𝜔2

0 − 𝜔2)) (3.5)

3.3 Steady state behaviour - Resonance
When we vary the frequency of the driving frequency we find that the response of
the driven system varies. If we examine the power transferred to the system as we
vary the driving frequency, we see that there is a peak around the natural frequency,
𝜔0, of the driven system (Figure 3.1). This is a phenomenon known as resonance.
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Figure 3.1: The power transferred to a system varies with the driving frequency.
The power transferred to a system is proportional to 𝜔𝐴2. The full-width at half-
maximum value is designated Δ𝜔. Note that as the damping coefficient 𝑏 increases,
there is a shift in maximum power transmission away from the natural frequency
𝜔0.

If this system is damped, we also see a change in the “full-width at half-maximum”
value.1 This FWHM is designated by Δ𝜔 in Figure 3.1 and is related to the 𝑄-factor
of the system via Equation 3.6:

Δ𝜔
𝜔0

= 1
𝑄 (3.6)

This allows us to determine the 𝑄-factor of a system through measurement of
resonance of the system, as a lightly-damped system (high 𝑄) will give a sharp
resonance with low Δ𝜔, while a more heavily damped system will lead to a more
broad resonance profile.
This use of the 𝑄-factor is important as it give us a measure of the ‘sharpness’ (or
quality) of the resonance. It may be applied to many systems including electronic
circuits.
We can also examine the phase of the oscillator’s displacement 𝑥 relative to that of
the driving force, 𝛿, shown in Figure 3.2.
We can see that at low driving frequencies, there is very little phase shift between
the two (the force is at a minimum when the displacement is at a minimum and is in
the same direction), while at very high driving frequencies we approach a maximum

1The “full-width at half maximum” (FWHM) is a term widely used in signals processing to de-
scribe the “spread” of a signal. A large FWHM indicates a broad signal over a range of frequencies,
while a small FWHM indicates a sharp signal over a narrow band of frequencies.
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Figure 3.2: The phase shift 𝛿 of the observed oscillation varies relative to the driving
frequency 𝜔.

phase shift of 𝜋 between the two (force still at a minimum at minimum displacement,
but now the force is directed in the opposite direction to the displacement; akin to
SHM). The phase change is at its most rapid when the frequency of the driving
force 𝜔 is similar to the natural frequency of the oscillator (𝜔0). At this point, the
driving force are “in quadrature” (90∘ out of phase), with the force at a maximum
when 𝑥 is changing most rapidly.

3.4 Full solution of the forced oscillator
As with the damped oscillator explored in Chapter 2, the full solution of the forced
oscillator is found through the combination of the “transient state” (a free, damped
system) and the “steady state” (fully forced oscillations). This is illustrated in
Equation 3.7:

𝑥 = transient + steady state
i.e. 𝑥 = 𝐴0e−( 𝑏

2𝑚 )𝑡ei(𝜔′𝑡+𝛿′) + 𝐴ei(𝜔𝑡−𝛿) (3.7)

The terms in Equation 3.7 are as follows:
• 𝛿 is given by Equation 3.5;
• 𝐴 given by Equation 3.4;
• 𝐴0 and 𝛿′ depend on the initial conditions;
• 𝜔 is the driving frequency;
• 𝜔′ is the frequency of the damped (transient) oscillations.

We can simplify our view of Equation 3.7 by applying initial conditions whereby the
displacement 𝑥 = 0 at time 𝑡 = 0. Therefore:
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0 = 𝐴0ei(𝛿′) + 𝐴e−i𝛿

…or, to rearrange, we obtain the form shown in Equation 3.8:

𝐴0 = −𝐴e−i(𝛿+𝛿′) (3.8)

As with any complex representation, we now compare the real and imaginary parts
of the solution. Remember that Equation 3.8 expands via De Moivre’s theorem to:

𝐴0 = −𝐴 (cos (𝛿 + 𝛿′) + i sin (𝛿 + 𝛿′)) (3.9)

The imaginary component of Equation 3.9 reduces to zero (the solution, 𝐴0 is fully
real):

0 = −𝐴 sin (𝛿 + 𝛿′)

We can therefore relate 𝛿 and 𝛿′ as follows:

𝛿 + 𝛿′ = 𝜋 i.e. 𝛿′ = 𝜋 − 𝛿 (3.10)

We now examine the ‘real’ component of Equation 3.9, equal to 𝐴0:

𝐴0 = −𝐴 cos (𝛿 + 𝛿′)

…and doing the same analysis, now that we know that, under our initial conditions,
𝛿 + 𝛿′ = 𝜋:

𝐴0 = −𝐴 cos 𝜋 i.e. 𝐴0 = 𝐴 (3.11)

We can now revisit Equation 3.7, now that we have values for 𝛿, 𝛿′ and 𝐴0 under
our starting conditions ( 𝑥 = 0 when 𝑡 = 0):

𝑥 = 𝐴 [ei(𝜔𝑡−𝛿) + e−( 𝑏
2𝑚 )𝑡ei(𝜔′𝑡+𝛿′)]

= 𝐴 [ei(𝜔𝑡−𝛿) + e−( 𝑏
2𝑚 )𝑡ei(𝜔′𝑡+𝜋−𝛿)]

= 𝐴 [ei(𝜔𝑡−𝛿) + e−( 𝑏
2𝑚 )𝑡ei(𝜔′𝑡−𝛿)ei𝜋]

= 𝐴 [ei(𝜔𝑡−𝛿) − e−( 𝑏
2𝑚 )𝑡ei(𝜔′𝑡−𝛿)]

(3.12)

Finally, we can find the actual displacement of the oscillator by examining the real
component of Equation 3.12, summarised in Equation 3.13):
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Re(𝑥) = 𝐴 [cos(𝜔𝑡 − 𝛿) − e−( 𝑏
2𝑚 )𝑡 cos(𝜔′𝑡 − 𝛿)] (3.13)

We can visualise the amplitude of a forced oscillator, as shown in Figure 3.3. At
very low frequencies, the oscillation has the same amplitude as the driving oscillation.
This rapidly increases under resonance to a peak, but then drops rapidly to a value
towards zero.
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Figure 3.3: The amplitude of a forced oscillation varies with driving frequency;
close to the driving amplitude at very low frequencies, close to zero at very high
frequencies, with a peak occurring under resonant conditions. Note that the position
of this peak varies with the damping coefficient 𝑏.

Note that the position of the resonant peak amplitude also varies with the damping
coefficient 𝑏.

3.4.1 Special cases of forced oscillations
There are three special cases of forced oscillations to consider:

1. 𝜔 ≪ 𝜔0
2. 𝜔 ≫ 𝜔0
3. 𝜔 = 𝜔0

In the special case when 𝜔 = 𝜔0 and the damping coefficient 𝑏 is small (allowing
the damped frequency 𝜔′ to be approximately equal to the driving frequency 𝜔),
we can rewrite the expression of the displacement (Equation 3.13) as shown in
Equation 3.14:

Re(𝑥) = 𝐴 cos(𝜔0𝑡 − 𝛿) [1 − e−( 𝑏
2𝑚 )𝑡] (3.14)
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Figure 3.4: When the frequency of the driving oscillation 𝜔 is very different to the
natural frequency of the system we see two regimes; firstly, where 𝜔 ≪ 𝜔0 (blue),
the natural frequency decays and we are left to observe the driving frequency at a
large amplitude; when 𝜔 ≫ 𝜔0 (orange), we see a much smaller amplitude oscillation
at close to the driving frequency.

We can see that the oscillation will converge to a maximum value, at which point
the energy put into the system becomes equal to the energy dissipated by the system
through damping, as shown in Figure 3.5:

3.5 Energy in driven oscillators
In a driven oscillator, energy is continually added to the system. When it reaches its
steady state, the rate of loss of energy in each cycle due to damping of the system
is equal to the work done by the driving force.
We can demonstrate this through integration; remember that (simplistically!) work
done is “force × distance”, so under varying force (as we have here), we can integrate
the force with respect to displacement 𝑥 to find an expression for the work done.
For the sake of convenience, we will consider the “real” component of the equation
for forced SHM shown in Equation 3.1 (the left-hand-side is entirely “real”, so the
“imaginary” component reduces to zero anyway):

𝑚d2𝑥
d𝑡2 + 𝑏d𝑥

d𝑡 + 𝑘𝑥 = 𝐹0 cos 𝜔𝑡 (3.15)

We also know that the steady state solution for the displacement 𝑥 in SHM is as
given in Equation 1.5. We can then find an expression for the velocity 𝑣 by finding
the first derivative of this expression (Equation 3.16):
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Figure 3.5: When the frequency of the driving oscillation 𝜔 = 𝜔0 (blue), we see the
amplitude grow to a plateau at which point the energy put into the system is equal
to the energy losses from the system.

𝑥 = 𝐴 cos(𝜔𝑡 − 𝛿)
𝑣 = d𝑥

d𝑡 = −𝜔𝐴 sin(𝜔𝑡 − 𝛿) (3.16)

3.5.1 Energy input for driven oscillators
To find the energy which is put into the system over one cycle, we therefore need
to find the integral of the force acting over one cycle of the oscillation, from 𝑡 = 0
to 𝑡 = 𝑇 (remember that 𝑇 is the period of the oscillation). We do this integration
by substituting our variable d𝑥 for 𝑣d𝑡 (as defined in Equation 3.16):
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𝐸in = ∫
𝑇

0
𝐹 ⋅ d𝑥 ≡ ∫

𝑇

0
𝐹 ⋅ 𝑣d𝑡

= ∫
𝑇

0
𝐹0 cos 𝜔𝑡 ⋅ [−𝜔𝐴 sin(𝜔𝑡 + 𝛿)] d𝑡

= −𝜔𝐴𝐹0∫
𝑇

0
cos 𝜔𝑡 ⋅ sin(𝜔𝑡 + 𝛿)

= −𝜔𝐴𝐹0∫
𝑇

0
cos 𝜔𝑡 ⋅ [sin 𝜔𝑡 cos 𝛿 + cos 𝜔𝑡 sin 𝛿]

= −𝜔𝐴𝐹0∫
𝑇

0
[cos 𝜔𝑡 sin 𝜔𝑡 cos 𝛿 + cos 𝜔𝑡 cos 𝜔𝑡 sin 𝛿]

= −𝜔𝐴𝐹0∫
𝑇

0
[1

2 sin 2𝜔𝑡 cos 𝛿 + (1
2 cos 2𝜔𝑡 + 1

2) sin 𝛿]

= −𝜔𝐴𝐹0 [− 1
4𝜔 cos 2𝜔𝑡 cos 𝛿 + ( 1

4𝜔 sin 2𝜔𝑡 + 𝑡
2) sin 𝛿]𝑇

0
= −𝜔𝐴𝐹0 ([− 1

4𝜔 cos 2𝜔𝑇 cos 𝛿 + ( 1
4𝜔 sin 2𝜔𝑇 + 𝑇

2 ) sin 𝛿] − [− 1
4𝜔 cos 0 cos 𝛿 + ( 1

4𝜔 sin 0 + 0
2) sin 𝛿])

Evaluation of this integral gives us the end result shown in Equation 3.17:

𝐸in = 1
2𝜔𝐴𝐹0𝑇 sin 𝛿 (3.17)

If we recall that 𝛿 = 𝜋
2 at resonance, substitution of this value into Equation 3.17

tells us that the maximum energy is transferred to the oscillator when driven at a
resonant frequency - in line with our expectations.
If we now use the definition of 𝛿 in Equation 3.5, we can use trigonometry and the
expression for 𝐴 in Equation 3.4 to give the expression sin 𝛿 = 𝐴𝑏𝜔

𝐹0
; we can also

use the fact that the period of oscillation 𝑇 and the angular frequency 𝜔 are related
by Equation 1.12 (𝑇 = 2𝜋

𝜔 ), and simplify the expression for the energy input for the
forced oscillator as shown in Equation 3.18:

𝐸in = 𝜋𝑏𝜔𝐴2 (3.18)

3.5.2 Energy lost in driving oscillators
To now determine the amount of energy, we follow a similar process as followed
in Section 3.5.1. This time however we need to determine the work done by the
oscillator on the damping force during one cycle. This integral is set up as follows:

𝐸lost = ∫
𝑇

0
𝐹𝑣d𝑡
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…but this time the force is the damping force, 𝐹damp = 𝑏𝑣.

𝐸lost = ∫
𝑇

0
𝑏𝑣2d𝑡

As before, we have the result that 𝑣 = −𝜔𝐴 sin(𝜔𝑡 − 𝛿) (Equation 3.16), and
following through the integration in a similar manner as in the previous section we
are led to the result in Equation 3.19 for a driven damped oscillator at steady
state.

𝐸lost = 𝜋𝑏𝜔𝐴2 = 𝐸in (3.19)

This result should not be a surprise; at a steady state, we expect the energy lost
to be equivalent to the energy put into the system, however it is nice that this is
vindicated through the mathematics!
A similar result may be obtained for electrical systems in resonance.
Note: When 𝑏 = 0 the above result appears to fail (no energy is lost, but none
is put in??); in fact, in an undamped system there can be no steady state (as no
energy is lost!), so the amplitude of vibration 𝐴 → ∞, so this result does not apply.

3.6 Impedance
As you learn about fields, you will examine electrical circuits and see that circuits
containing capacitors and inductors are analogous to mechanical oscillators, with
the electrical charge oscillating within the circuit. These properties of circuits have
many important applications and you will find that much of the analysis we have
done here can be applied to those electrical systems.
In the context of an electrical circuit it is useful to define the term impedance
a measure of the opposition to the flow of current, and is defined as the ratio of
the voltage to current (𝑉

𝐼 ) for a particular circuit component. For a resistor this is
simply the resistance, however capacitors and inductors also possess impedance.
It turns out to be helpful to write this impedance as a complex number with com-
ponents in both the real and imaginary plane. This works well with the complex
representation of oscillations and naturally takes care of any differences in phase of
the current and voltage in different components.
Bringing the analogy back to mechanical oscillations, a mechanical system can also
be considered to have an impedance. We define the mechanical impedance as the
force required to produce unit velocity, i.e. 𝑍𝑚 = 𝐹

𝑣 , or 𝐹 = 𝑣𝑍𝑚. This is
the mechanical equivalent of Ohm’s law; force corresponding to the voltage, and
velocity corresponding to current.
This idea of mechanical impedance will be useful in discussion of wave propagation.

37



Chapter 4

Coupled Oscillators

The next stage in our exploration of oscillators is to examine the principles behind
coupling one oscillator to another. This is known as a ‘coupled oscillator’. A typical
example of a coupled oscillator is shown in Figure 4.3 below; a pair of oscillating
masses on springs which are linked by a further spring. An alternative model uses two
simple pendulums, connected by a coupling spring. In either case, the mathematics
is similar.
For the purposes of discussion here, we will consider the example of two linked
masses. This ostensibly keeps the mathematics simpler, however through a simple
substitution it is readily adapted for the case of the linked pendulums.

4.1 The uncoupled example
Consider two masses oscillating on a smooth plane as shown in Figure 4.1.

mA mB

kA kB
0,A 0,B

A B
1

Figure 4.1: Two masses, 𝑚𝐴 and 𝑚𝐵 oscillating on a frictionless surface. In the
absence of a coupling spring, the two masses will undergo SHM indpendently. The
displacements 𝑥𝐴 and 𝑥𝐵 are defined relative to the respective equilibrium positions,
𝑥0,𝐴 and 𝑥0,𝐵.

This is a situation we have seen before, and we can set up the equations of motion
in a straightforward manner by considering the forces on the masses.
For A:

38



mA mB

kA kB
0,A 0,B

A B

FBFA

1

Figure 4.2: The forces on the oscillating masses due to the springs can be deter-
mined from the spring extension. For the purposes of setting up the equations, we
arbitrarily set the positive direction to the right, however we will get the same result
whichever way we consider this.

𝐹𝐴 = −𝑘𝐴𝑥𝐴 = 𝑚𝐴
d2𝑥𝐴
d𝑡2 (4.1)

and for B:
𝐹𝐵 = −𝑘𝐵𝑥𝐵 = 𝑚𝐵

d2𝑥𝐵
d𝑡2 (4.2)

4.2 Coupling the oscillators
So far, this is unremarkable. However, when we connect the two masses with a
third spring, we can start to consider the coupled interactions. We illustrate this in
Figure 4.3.

mA mB

kA kBkAB
0,A 0,B

A B
1

Figure 4.3: The two oscillating masses from our earlier example are now connected
by a third spring, of spring constant 𝑘𝐴𝐵. We can asssume that all other parameters
retain their previous definitions.

In order to determine the equations of motion here, we need to consider the forces
on each oscillating mass. Put simply; there are two forces acting on each mass to
control their oscillations; the force from its original spring (𝐹𝐴 or 𝐹𝐵), and the new
force from the coupling spring, 𝐹𝐴𝐵.
From Figure 4.3 we can see that the overall extension of the coupling spring, 𝛿 will
be given by:

𝛿 = 𝑥𝐵 − 𝑥𝐴 (4.3)

The appearance of the negative sign in Equation 4.3 initially appears counter-
intuitive, however consider the signs on each of the extensions in reference to the
arbitrary ‘positive’ direction we defined earlier:
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• If 𝑥𝐵 = 𝑥𝐴, there will be no extension; so no force will be applied from the
coupling spring

• In the diagram above, 𝑥𝐴 is negative; this gives a double-negative in Equa-
tion 4.3, with a positive value of 𝛿 (a stretched spring)

• However, if 𝑥𝐴 is sufficiently positive, it will result in a negative value of 𝛿,
indicating a compressed spring.

You may find it helpful to draw sketches of each of these situations to reason it
through!
Ok, let’s first consider the total force acting on mass 𝐴:

𝐹Total,𝐴 = 𝐹𝐴 + 𝐹𝐴𝐵
= −𝑘𝐴𝑥𝐴 + 𝑘𝐴𝐵(𝛿)
= −𝑘𝐴𝑥𝐴 + 𝑘𝐴𝐵(𝑥𝐵 − 𝑥𝐴)
= 𝑚𝐴

d2𝑥𝐴
d𝑡2

(4.4)

We can reason the direction of the force 𝐹𝐴𝐵 from a sketch; if the coupling spring
is stretched (positive 𝛿), the force will be in the positive direction. If the coupling
spring is compressed (negative 𝛿) the force will be in the negative direction.
This situation changes slightly for mass 𝐵:

𝐹Total,𝐵 = 𝐹𝐵 − 𝐹𝐴𝐵
= −𝑘𝐵𝑥𝐵 − 𝑘𝐴𝐵(𝛿)
= −𝑘𝐵𝑥𝐵 − 𝑘𝐴𝐵(𝑥𝐵 − 𝑥𝐴)
= 𝑚𝐵

d2𝑥𝐵
d𝑡2

(4.5)

In this case, a stretched coupling spring (positive 𝛿) will cause a force in the negative
direction and vice versa.
We have therefore generated two equations of motion to describe the coupled oscil-
lator:

−𝑘𝐴𝑥𝐴 + 𝑘𝐴𝐵(𝑥𝐵 − 𝑥𝐴) = 𝑚𝐴
d2𝑥𝐴
d𝑡2 (4.6)

and

−𝑘𝐵𝑥𝐵 − 𝑘𝐴𝐵(𝑥𝐵 − 𝑥𝐴) = 𝑚𝐵
d2𝑥𝐵
d𝑡2 (4.7)

4.3 Simplifying the expressions
We know from instinct that the motion of a component in a coupled oscillator should
be harmonic in nature, however it is not immediately clear from the equations that
this is the case; therefore some simplification is in order.

40



Firstly, let’s add together Equation 4.6 and Equation 4.7:

𝑚𝐴
d2𝑥𝐴
d𝑡2 + 𝑚𝐵

d2𝑥𝐵
d𝑡2 = −𝑘𝐴𝑥𝐴 − 𝑘𝐵𝑥𝐵 + 𝑘𝐴𝐵(𝑥𝐵 − 𝑥𝐴)

−𝑘𝐴𝐵(𝑥𝐵 − 𝑥𝐴)
= −𝑘𝐴𝑥𝐴 − 𝑘𝐵𝑥𝐵

(4.8)

If the spring constants 𝑘𝐴 and 𝑘𝐵 are equal, and the masses 𝑚𝐴 and 𝑚𝐵 are equal,
we can simplify further:

𝑚d2(𝑥𝐴 + 𝑥𝐵)
d𝑡2 = −𝑘(𝑥𝐴 + 𝑥𝐵) (4.9)

We can gain a second expression to describe our coupled system by subtracting
Equation 4.7 from Equation 4.6:

𝑚𝐴
d2𝑥𝐴
d𝑡2 − 𝑚𝐵

d2𝑥𝐵
d𝑡2 = −𝑘𝐴𝑥𝐴 + 𝑘𝐵𝑥𝐵 + 𝑘𝐴𝐵(𝑥𝐵 − 𝑥𝐴)

+𝑘𝐴𝐵(𝑥𝐵 − 𝑥𝐴)
= −𝑘𝐴𝑥𝐴 + 𝑘𝐵𝑥𝐵 + 2𝑘𝐴𝐵(𝑥𝐵 − 𝑥𝐴)

(4.10)

Again, if the spring constants 𝑘𝐴 and 𝑘𝐵 are equal, and the masses 𝑚𝐴 and 𝑚𝐵
are equal, we can again simplify further:

𝑚d2(𝑥𝐴−𝑥𝐵)
d𝑡2 = −𝑘(𝑥𝐴 − 𝑥𝐵) − 2𝑘𝐴𝐵(𝑥𝐴 − 𝑥𝐵)

= −(𝑘 + 2𝑘𝐴𝐵)(𝑥𝐴 − 𝑥𝐵) (4.11)

This does not immediately appear to simplify the situation, however if we now define
two variables, 𝑦1 and 𝑦2 (we use numerical subscripts now to eliminate confusion
with the alphabetical labels of the oscillating masses):

𝑦1 = 𝑥𝐴 + 𝑥𝐵
𝑦2 = 𝑥𝐴 − 𝑥𝐵

(4.12)

we can now do a substitution into Equation 4.9 and Equation 4.11:
Equation 4.9 becomes:

𝑚d2(𝑥𝐴+𝑥𝐵)
d𝑡2 = −𝑘(𝑥𝐴 + 𝑥𝐵)

𝑚d2𝑦1
d𝑡2 = −𝑘𝑦1

(4.13)

…while Equation 4.11 becomes
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𝑚d2(𝑥𝐴−𝑥𝐵)
d𝑡2 = −(𝑘 + 2𝑘𝐴𝐵)(𝑥𝐴 − 𝑥𝐵)

𝑚d2𝑦2
d𝑡2 = −(𝑘 + 2𝑘𝐴𝐵)𝑦2

(4.14)

Now we have two equations, Equation 4.13 and Equation 4.14, each of which is far
simpler than the solutions in 𝑥, and each satisfies a harmonic oscillator condition
in 𝑦𝑛. However, the 𝑦𝑛 terms do not influence each other and are, effectively
independent.

Key observations

• 𝑦1 represents one oscillator of mass 𝑚 and a spring constant 𝑘;
• 𝑦2 represents a second oscillator of mass 𝑚 and a spring constant (𝑘 +

2𝑘𝐴𝐵)

4.4 Getting back to displacement
We can therefore use the same approach as we used in Section 1.2 to give a solution
for each term:

{ 𝑦1(𝑡) = 𝐵1 cos(𝜔1𝑡 + 𝜙1)
𝑦2(𝑡) = 𝐵2 cos(𝜔2𝑡 + 𝜙2) (4.15)

Note that we are deliberately using different terms from previous examples (𝐵𝑛, 𝜙𝑛),
to highlight that these are arbitrary constants. However, we can now use the
same techniques as in Equation 1.2 and Equation 1.9 to obtain expressions for
the frequencies 𝜔1 and 𝜔2 (Equation 4.16):

𝜔1 = √ 𝑘
𝑚

𝜔2 = √(𝑘 + 2𝑘𝐴𝐵)
𝑚

(4.16)

We can now return to equations Equation 4.12 to return our expressions in 𝑦 to
the displacement 𝑥 of each oscillating mass. Firstly, invert the equations shown in
Equation 4.12 to obtain the results shown in Equation 4.17:
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⎧{{{{{
⎨{{{{{⎩

𝑥𝐴 = 𝑦1 − 𝑥𝐵
= 𝑦2 + 𝑥𝐵
= 1

2𝑦1 + 1
2𝑦2

𝑥𝐵 = 𝑦1 − 𝑥𝐴
= 𝑦2 + 𝑥𝐴
= 1

2𝑦1 − 1
2𝑦2

(4.17)

4.5 Solving the coupled oscillator
We can now use the general results from Equation 4.15 to give the coupled solutions
Equation 4.18:

{ 𝑥1 = 1
2𝐵1 cos(𝜔1𝑡 + 𝜙1) + 1

2𝐵2 cos(𝜔2𝑡 + 𝜙2)
𝑥2 = 1

2𝐵1 cos(𝜔1𝑡 + 𝜙1) − 1
2𝐵2 cos(𝜔2𝑡 + 𝜙2) (4.18)

Recalling our angle formulae, we know that we can express the term 𝐵 cos(𝜔𝑡 + 𝜙)
as 𝐶 cos(𝜔𝑡) + 𝐷 sin(𝜔𝑡), where the new constants 𝐶 and 𝐷 are a combination of
the original constant 𝐵 and either cos 𝜙 or sin 𝜙 (ensure you can identify where this
comes from!). This can be used to give a full general solution as:

{ 𝑥1 = 𝐶1 cos(𝜔1𝑡) + 𝐷1 sin(𝜔1𝑡) + 𝐶2 cos(𝜔2𝑡) + 𝐷2 sin(𝜔2𝑡)
𝑥2 = 𝐶1 cos(𝜔1𝑡) + 𝐷1 sin(𝜔1𝑡) − 𝐶2 cos(𝜔2𝑡) − 𝐷2 sin(𝜔2𝑡) (4.19)

This full solution is more helpful to us if we wish to consider initial conditions of
the system (e.g. 𝑥1(0), 𝑣1(0) etc.).

4.6 Normal coordinates
But where are the practicalities of all this? So far, we have done a lot of math-
ematical manipulation to arrive at two coupled equations (Equation 4.19) which,
while they ostensibly describe the position of two coupled oscillating masses, still
remain frustratingly abstract! It is helpful to return to the ‘simple’ expressions in
Equation 4.13 and Equation 4.14:

{𝑚d2𝑦1
d𝑡2 = −𝑘𝑦1

𝑚d2𝑦2
d𝑡2 = −(𝑘 + 2𝑘𝐴𝐵)𝑦2

(4.20)

These underlying ‘natural variables’, 𝑦1 and 𝑦2, are much simpler to consider
and work with, and we therefore call these variables “normal coordinates”,
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as it is simpler to work with these directly, and then return to displace-
ment/velocity/acceleration coordinates of the system. It also helps us to visualise
what is happening within the system. To do this, we will take the two extreme
situations - when 𝑥𝐴 = 𝑥𝐵, and when 𝑥𝐴 = −𝑥𝐵.
It is helpful to have the following on hand:

𝑦1 = 𝑥𝐴 + 𝑥𝐵
𝑦2 = 𝑥𝐴 − 𝑥𝐵

4.6.1 When 𝑥𝐴 = 𝑥𝐵
In this situation, 𝑦1 = 2𝑥, and 𝑦2 = 0. From equation Equation 4.18, the 𝑦2 term
reduces to zero, and we have the displacements for each oscillator as Equation 4.21:

{ 𝑥1 = 1
2𝐵1 cos(𝜔1𝑡 + 𝜙1)

𝑥2 = 1
2𝐵1 cos(𝜔1𝑡 + 𝜙1) (4.21)

We can see from the mathematics that the displacement of each mass from its
equilibrium point is identical, however it is often helpful to visualise this motion. In
this case, the mid-point between the masses may be considered to be moving in
concert with the two masses (Figure 4.4):

x0, A x0, B

Figure 4.4: When the initial displacement of each oscillator is identical, the coupling
spring is neither stretched nor compressed, so has no effect on the oscillation period
of each oscillator. The oscillation of each mass is identical and perfectly in phase.

Fundamentally, from Equation 4.3 we know that if 𝑥𝐴 = 𝑥𝐵, then the extension
of the coupling spring is zero. Therefore each mass may be considered to be os-
cillating exactly in phase and only under the influence of its spring, 𝑘. We would
expect therefore the oscillation frequency to match that of the uncoupled oscillators
introduced in Section 4.1.

4.6.2 When 𝑥𝐴 = −𝑥𝐵
This is the exact opposite situation to that discussed above. In this situation, 𝑦1 = 0,
and 𝑦2 = 2𝑥. As it is the 𝑦0 term which is now reduced to zero in Equation 4.18,
this expression reduces to Equation 4.22:
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{ 𝑥1 = 1
2𝐵2 cos(𝜔2𝑡 + 𝜙2)

𝑥2 = −1
2𝐵2 cos(𝜔2𝑡 + 𝜙2) (4.22)

Now we have a symmetry; at any stage of motion, mass 𝐴 will be displaced by the
same amount as mass 𝐵 in the opposite direction. The consequence of this now is
that the mid-point between the masses now does not move as the masses oscillate,
and can be considered a node (Figure 4.5).

x0, A x0, B

Figure 4.5: When the initial displacement of each oscillator is identical but opposite,
the coupling spring is either fully stretched or fully compressed. It may now be
considered to be fully active in the oscillation. This time, the oscillation of each
mass, while identical, is perfectly out of phase.

4.6.3 Application of normal coordinates
These two situations describe the two vibrational “modes” of this coupled system,
termed normal modes; any oscillation of this system is completely described by
the combination of contributions from each mode (𝑦1 describing the uncoupled
contribution, 𝑦2 describing the fully coupled contribution)

Characteristics of normal coordinates

• Normal coordinates arise from equations of motion expressed in the
form of linear differential equations, each with only a single dependent
variable (𝑦1 and 𝑦2 in our examples).

• A normal mode of vibration is a vibration of the system which involves
only one dependent variable (either 𝑦1 or 𝑦2 in our examples)

• Each normal mode of vibration has its own characteristic frequency, its
normal frequency

• The overall vibration of a system may be described as a series of con-
tributions from each normal mode; each normal mode is independent
of other normal modes, and energy is never exchanged between normal
modes.
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4.7 Particular solutions
We covered two particular solutions above, concerning the extreme cases of the
normal coordinates, however there are other interesting cases. One particular case
occurs when a vibration is initiated with one mass in its equilibrium position and
only the other mass is disturbed. The coupling spring of course transfers energy
from the moving mass to the stationary one, however due to the similarity in mass,
we start to observe resonance effects (Figure 4.6).

A note on energy transfer

When considering the individual masses in a coupled system, we of course have
transfer of energy occurring between the two masses. However it is impor-
tant to recognise that while energy is transferred between coupled oscillators,
energy is not transferred between the normal vibrational modes describing
that oscillation of the system.

x0, A x0, B

Figure 4.6: If one mass is held stationary at its equilibrium position while the other
is displaced as a starting condition, then we see that energy is transferred from one
oscillator to the other and back again. In this example, 𝑘 = 10𝑘𝐴𝐵

This resonant energy transfer between each oscillator is particularly apparent when
the coupling spring has a considerably lower spring constant than the springs con-
necting the oscillators to the rigid walls (the local springs); in Figure 4.6 the coupling
spring has a constant which is one-tenth that of the local springs.
We can solve this example algebraically. Let’s re-exmine to the general solution for
the coupled oscillator (Equation 4.23)

{ 𝑥1 = 1
2𝐵1 cos(𝜔1𝑡 + 𝜙1) + 1

2𝐵2 cos(𝜔2𝑡 + 𝜙2)
𝑥2 = 1

2𝐵1 cos(𝜔1𝑡 + 𝜙1) − 1
2𝐵2 cos(𝜔2𝑡 + 𝜙2) (4.23)

We said that at the start, our initial conditions would be that one oscillator is
displaced to amplitude 𝐴 while the other is held at its equilibrium. Therefore our
starting conditions become:

𝑥1(0) = 𝐴 ̇𝑥1(0) = 0
𝑥2(0) = 0 ̇𝑥2(0) = 0
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The result of this is that our phase constant 𝜙 evaluates to zero, while the amplitude
component 𝐵1 = 𝐵2 = 𝐴. We can apply these to Equation 4.23 to obtain a
particular solution:

{ 𝑥1 = 1
2𝐴 cos(𝜔1𝑡) + 1

2𝐴 cos(𝜔2𝑡)
𝑥2 = 1

2𝐴 cos(𝜔1𝑡) − 1
2𝐴 cos(𝜔2𝑡) (4.24)

This can then be rewritten using the appropriate trigonometric identity as:

{ 𝑥1 = 𝐴 cos (𝜔2−𝜔1
2 𝑡) cos (𝜔2+𝜔1

2 𝑡)
𝑥2 = 𝐴 sin (𝜔2−𝜔1

2 𝑡) sin (𝜔2+𝜔1
2 𝑡) (4.25)

We said that this resonance transfer was particularly great when there is an appre-
ciable difference between the spring constants of the coupling spring and the local
springs; let’s therefore consider what is going on.
When the spring constant of the coupling spring 𝑘𝐴𝐵 is much greater than 𝑘, this
will affect the frequencies 𝜔1 and 𝜔2. From Equation 4.16, when 𝑘𝐴𝐵 << 𝑘, then
the values of 𝜔1 and 𝜔2 will be similar in magnitude, with 𝜔2 only slightly larger.
This means that the value of 𝜔2 − 𝜔1 will be very small, while 𝜔2 + 𝜔1 will be
considerably larger.
We therefore have two cosine terms governing 𝑥1:

• cos (𝜔2−𝜔1
2 𝑡) will oscillate much slower than cos (𝜔2+𝜔1

2 𝑡)
• We view this as an oscillator of frequency (𝜔2+𝜔1

2 ), whose amplitude varies
slowly with frequency (𝜔2−𝜔1

2 )
A very similar situation exists for for 𝑥2, however the terms are governed by sine
functions - which are 𝜋/2 out of phase with the oscillations of the first.

A note about phases of beats

The second amplitude term described above can be called the envelope of
the primary oscillation - in that it contains the amplitude of the primary
oscillation within itself.
Although the oscillations of the second coupled oscillator are 𝜋/2 out of phase
with the oscillations of the first, practically we observe that one is a maximum
while the other is a minimum; the nature of an envelope is to contain a primary
function, and its amplitude maxima of the primary function occur twice per
envelope cycle giving the appearance of amplitudes being perfectly out of
phase.
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Figure 4.7: Comparing the changes of position of coupled oscillators A and B as a
function of time; note that the energy transfers back and forward between A and B
such that each is contained within envelopes with a 𝜋/2 phase difference, although
it appears as though it is a 𝜋 phase offset.

4.8 The general solution: a matrix approach
We have shown above how we can obtain a solution for a system of two coupled oscil-
lators, together with methods for finding a general solution. However, what happens
when we have three coupled oscillators? Or four? Or - given that in materials we
are dealing with solid lattices of bonded molecules - an almost uncountable number
of coupled oscillators? The approaches detailed above become extremely difficult
with each additional oscillator. We therefore need a method which is scalable.
In Section 4.2 we set up the equations of motion for the coupled oscillator (Equa-
tion 4.6 and Equation 4.6); these are reproduced below in Equation 4.27:

{𝑚𝐴
d2𝑥𝐴
d𝑡2 = −𝑘𝐴𝑥𝐴 + 𝑘𝐴𝐵(𝑥𝐵 − 𝑥𝐴)

𝑚𝐵
d2𝑥𝐵
d𝑡2 = −𝑘𝐵𝑥𝐵 − 𝑘𝐴𝐵(𝑥𝐵 − 𝑥𝐴)

(4.26)

Let’s rewrite these equations to group our 𝑥𝐴 and 𝑥𝐵 terms rather than the 𝑘
terms:

{𝑚𝐴
d2𝑥𝐴
d𝑡2 = −(𝑘𝐴 + 𝑘𝐴𝐵)𝑥𝐴 + 𝑘𝐴𝐵𝑥𝐵

𝑚𝐵
d2𝑥𝐵
d𝑡2 = −(𝑘𝐵 + 𝑘𝐴𝐵)𝑥𝐵 + 𝑘𝐴𝐵𝑥𝐴

(4.27)

From your understanding of differential equations, you should recognise these as
linear differential equations; therefore you should know that we can apply the
principles of linear algebra to solve the equations. We can therefore use matrices
and eigenstates to determine our solutions.
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We can add together the differential equations in Equation 4.27 and then write the
result in matrix form as follows (Equation 4.28)

( 𝑚𝐴 0
0 𝑚𝐵

) (
d2𝑥𝐴
d𝑡2

d2𝑥𝐵
d𝑡2

) = − ( (𝑘𝐴 + 𝑘𝐴𝐵) −𝑘𝐴𝐵
−𝑘𝐴𝐵 (𝑘𝐵 + 𝑘𝐴𝐵) ) ( 𝑥𝐴

𝑥𝐵
)

(4.28)
For simplicity, we will now define a ‘spring matrix’, 𝐾, defining the springs constant,
and a ‘mass matrix’, 𝑀 (Equation 4.29)

𝐾 = ( (𝑘𝐴 + 𝑘𝐴𝐵) −𝑘𝐴𝐵
−𝑘𝐴𝐵 (𝑘𝐵 + 𝑘𝐴𝐵) ) ; 𝑀 = ( 𝑚𝐴 0

0 𝑚𝐵
) (4.29)

This allows us to tidily rewrite Equation 4.28 as Equation 4.30:

𝑀 d2 ̄𝑥
d𝑡2 = −𝐾 ̄𝑥 (4.30)

…where:

̄𝑥 = ( 𝑥𝐴
𝑥𝐵

) and d ̄𝑥
d𝑡 = (

d𝑥𝐴
d𝑡d𝑥𝐵
d𝑡

)

You will recall from your mathematics lectures that you can solve such matrix
equations by multiplying both sides of the equation by the inverse of a matrix; in
this case we will multiply both sides of Equation 4.30 by the inverse 𝑀−1:

𝑀−1𝑀 d2 ̄𝑥
d𝑡2 = −𝑀−1𝐾 ̄𝑥
d2 ̄𝑥
d𝑡2 = −𝑀−1𝐾 ̄𝑥

(4.31)

…where 𝑀−1 is:

𝑀−1 = (
1

𝑚𝐴
0

0 1
𝑚𝐵

)

If we express 𝑀−1𝐾 as 𝐷, the dynamics equation, we can write this matrix
equation as:

d2 ̄𝑥
d𝑡2 = −𝐷 ̄𝑥 (4.32)
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We can immediately see the connection between the matrix equation shown in
Equation 4.31 and the equation of motion for a harmonic oscillator. Let’s now
develop this.

4.8.1 A trial solution
Let’s now assume a simple case, with a single oscillation frequency. We will use a
trial solution for all vibrational modes, in the form 𝐴 cos(𝜔𝑡 + 𝜙). Let’s define each
solution of 𝑥𝑛 in this manner:

{𝑥𝐴,trial = 𝐴1 cos(𝜔𝑡 + 𝜙)
𝑥𝐵,trial = 𝐴2 cos(𝜔𝑡 + 𝜙) (4.33)

We have been working with matrix forms; so let’s represent this in a matrix form:

̄𝑥trial = ( 𝐴1 cos(𝜔𝑡 + 𝜙)
𝐴2 cos(𝜔𝑡 + 𝜙) ) = ̄𝐴 cos(𝜔𝑡 + 𝜙) where ̄𝐴 = ( 𝐴1

𝐴2
) (4.34)

This matrix form is now using ̄𝐴; the mode amplitude vector. We can now find
the second derivative of this to be:

d2 ̄𝑥trial
d𝑡2 = −𝜔2 ̄𝐴 cos(𝜔𝑡 + 𝜙) (4.35)

…which, when we know from Equation 4.32 that the second derivative should give
us −𝐷 ̄𝐴 cos(𝜔𝑡 + 𝜙), we obtain the result:

𝜔2 ̄𝐴 cos(𝜔𝑡 + 𝜙) = −𝐷 ̄𝐴 cos(𝜔𝑡 + 𝜙)
𝐷 ̄𝐴 = 𝜔2 ̄𝐴 (4.36)

Equation 4.36 is the main result of this process; that being that the amplitude
vector of a vibrational mode is an eigenvector of the dynamics matrix 𝐷 with the
eigenvalue being the square of the frequency of that mode.

4.8.2 The general case
We have said Equation 4.36 as an eigenvalue equation; this is one of the most
important tools in physics, and it is essential to understand how they work. In this
case, we will apply this to determine the frequencies for a coupled oscillator and
check with our results above.
We already seen the end result, that 𝐷 ̄𝐴 = 𝜔2 ̄𝐴, having constructed this assuming
a single oscillation frequency. But how does this scale, particularly as we said earlier
that we expect two frequencies, one from each vibrational mode?
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A refresher on eigenvalue equations

For an eigenvalue equation, an 𝑛 × 𝑛 matrix 𝐴 will have 𝑛 eigenvalues (𝜆𝑖)
and 𝑛 eigenvectors ̄𝑥𝑖 such that:

𝐴 ̄𝑥𝑖 = 𝜆𝑖 ̄𝑥𝑖

To find our eigenvalues, we need to rearrange and solve for 𝜆𝑖:

𝐴 ̄𝑥𝑖 − 𝜆𝑖 ̄𝑥𝑖 = 0
𝐴 ̄𝑥𝑖 − 𝜆𝑖I ̄𝑥𝑖 = 0
(𝐴 − 𝜆𝑖I) ̄𝑥𝑖 = 0

Remember that we need to multiply 𝜆𝑖 by the identity matrix I because we
cannot perform addition/subtraction on matrices of different dimensions.
We can now solve the eigenvalue equation; either ̄𝑥𝑖 = 0 (a null result), or
the determinant of the matrix |𝐴 − 𝜆𝑖I| = 0. Evaluating this determinant
will give the characteristic polynomial which, when solved for 𝜆𝑖, will give the
eigenvalues for the equation.

We start with our eigenvalue equation, and we can rearrange this to obtain an
expression which will allow us to evaluate the eigenvalue (Equation 4.37).

𝐷 ̄𝐴 = 𝜔2 ̄𝐴
𝐷 ̄𝐴 − 𝜔2 ̄𝐴 = 0

𝐷 ̄𝐴 − 𝜔2I ̄𝐴 = 0
(𝐷 − 𝜔2I) ̄𝐴 = 0

(4.37)

From this statement, either ̄𝐴 is equal to zero, or the determinant of the matrix
(𝐷 − 𝜔2I) is equal to zero. Clearly we use this second result to determine the value
of the eigenvalue, 𝜔2.
Remembering from Section 4.8 we defined 𝐷 as the dynamics matrix derived from
the inverse of the ‘mass matrix’ and the ‘spring matrix’ such that:

𝐷 = 𝑀−1𝐾 = (
1

𝑚𝐴
0

0 1
𝑚𝐵

) ( (𝑘𝐴 + 𝑘𝐴𝐵) −𝑘𝐴𝐵
−𝑘𝐴𝐵 (𝑘𝐵 + 𝑘𝐴𝐵) )

= (
𝑘𝐴+𝑘𝐴𝐵

𝑚𝐴
−𝑘𝐴𝐵

𝑚𝐴
−𝑘𝐴𝐵

𝑚𝐵
𝑘𝐵+𝑘𝐴𝐵

𝑚𝐵

)
(4.38)

Now, we set up the matrix form of our eigenvalue equation from Equation 4.37;
remembering that we are looking for the eigenvalues which result in a determinant
of zero. Let’s work it through!
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(𝐷 − 𝜔2I) ̄𝐴 = 0

det [(
𝑘𝐴+𝑘𝐴𝐵

𝑚𝐴
−𝑘𝐴𝐵

𝑚𝐴
−𝑘𝐴𝐵

𝑚𝐵
𝑘𝐵+𝑘𝐴𝐵

𝑚𝐵

) − 𝜔2 ( 1 0
0 1 )] = 0

det [ (𝑘𝐴+𝑘𝐴𝐵
𝑚𝐴

) − 𝜔2 −𝑘𝐴𝐵
𝑚𝐴

−𝑘𝐴𝐵
𝑚𝐵

(𝑘𝐵+𝑘𝐴𝐵
𝑚𝐵

) − 𝜔2 ] = 0

(4.39)

We will simplify the arrangement somewhat by considering the coupled oscillator
we have been examining above; where the local springs 𝑘𝐴 and 𝑘𝐵 have the same
spring constant, 𝑘, and the oscillators 𝐴 and 𝐵 have the same mass, 𝑚. Our
determinant then becomes:

det [ (𝑘+𝑘𝐴𝐵
𝑚 ) − 𝜔2 −𝑘𝐴𝐵

𝑚
−𝑘𝐴𝐵

𝑚 (𝑘+𝑘𝐴𝐵
𝑚 ) − 𝜔2 ] = 0

[(𝑘+𝑘𝐴𝐵
𝑚 ) − 𝜔2]2 − 𝑘2

𝐴𝐵
𝑚2 = 0

(4.40)

This relation is now a quadratic in 𝜔2; as such, it will have two solutions - each
corresponding to a different value of 𝜔 - this is what we are expecting - to find 𝜔1
and 𝜔2 above. So we solve for 𝜔2:

[(𝑘+𝑘𝐴𝐵
𝑚 ) − 𝜔2]2 − 𝑘2

𝐴𝐵
𝑚2 = 0

(𝑘+𝑘𝐴𝐵
𝑚 ) − 𝜔2 = ±𝑘𝐴𝐵

𝑚
𝑘 + 𝑘𝐴𝐵 − 𝑚𝜔2 = ±𝑘𝐴𝐵

𝑚𝜔2 = ∓𝑘𝐴𝐵 + (𝑘 + 𝑘𝐴𝐵)

𝜔2 = 𝑘
𝑚 or 𝜔2 = 2𝑘𝐴𝐵 + 𝑘

𝑚

(4.41)

As we can see in Equation 4.41 we gain a result for 𝜔2 which gives us the two
solutions for 𝜔1 and 𝜔2 which we uncovered in Section 4.3 and Section 4.4.

Caution

Remember the frequencies that we have found here correspond to the fre-
quencies of the normal modes of vibration of the system (Section 4.6.3).
They are used to describe the motion of individual oscillating masses, but
both frequencies apply to each oscillating mass - not one frequency for each
mass!
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4.9 Why use matrices?
We have shown a few routes to look at coupled oscillators, each of which we have
demonstrated to lead to the same outcome. The obvious question is why use so
many approaches?
When we looked at the separate differential equations, it was a problem which is
possible to solve here for two coupled oscillators, however it is not a method which
is particularly scalable, for either different masses, different spring constants, or even
a larger number of coupling oscillators.
The matrix approach however is scalable - it is simple in its form allowing us to see
the nature of the oscillation and that it is - at its heart - still harmonic, however
this simple form will scale readily for larger systems. We could look at a system
of five linearly coupled oscillators, and we would expect a 5 × 5 spring (and hence
dynamics) matrix, the determinant of which would be a fifth order polynomial with
five solutions for the oscillation frequency, each corresponding to the frequency of
a normal mode of vibration for the system.
Solving a determinant for a 3 × 3 matrix by hand is doable, for a 4 × 4 matrix is
troublesome, and a 5 × 5 matrix is downright inconvenient. However, computers
are excellent at resolving determinants of matrices - making solving such problems
possible - provided we know what instructions to give the computer!

Applications of matrix methods

Matrices are universal in physics, and it is hard to understate the importance
of solving eigenvalue equations. Linear algebra is central to quantum physics,
and greatly simplifies the process of solving complex interlinked systems. The
methods shown above are simply one application of the techniques.
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Chapter 5

Pendulums

A pendulum is a mechanically simple oscillating system; its oscillation can be con-
sidered SHM for small displacements. A simple pendulum is shown in Figure 5.1,
and it is worth quickly revisiting this example as we will extend this in our further
examples.
At its core, a pendulum is an oscillator whose oscillation is based on a rotational,
rather than a linear displacement. Consequently the dynamics governing pendulums
is slightly different to a linear oscillator, however they are a good example to show
that we can approximate small displacements as “simple harmonic oscillations”.
We can loosely break down pendulums (pendula?) into a number of categories
depending on their nature. Note this is not an exhaustive list!

• A simple pendulum. This is the simplest pendulum we can consider; a point
mass attached to a light string, swinging under the influence of gravity alone.
We approximate this in reality by using a thin string and a heavy mass such
that the mass of the string is insignificant in the calculations.

• A physical pendulum. This is similar in setup to the simple pendulum, however
we take into account the mass of the rod connecting the mass to the pivot
(note a “rod” rather than a “string”) as well as the physical size of the mass.
This requires determination of moments of inertia.

• A torsional pendulum. This is a pendulum whose oscillations are not driven by
gravity - rather by the forces induced when a horizontally rotating mass twists
a fixed vertical support. This is often used in portable mechanical clocks
where there is not space for a physical pendulum.

• A double (or compound) pendulum. This is a system of two (or more!)
pendula connected end to end, such that the end of one pendulum forms the
pivot of the next. It results in motion which is described as chaotic.

We will examine the case of the simple pendulum, the physical pendulum, and will
take a brief look at the double pendulum.
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1Figure 5.1: A simple pendulum, consisting of a mass 𝑚 swinging on a string of
length 𝐿. At angle 𝜙, the weight of the mass 𝑚𝑔 can be resolved into components
to determine the mechanics of the system.
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5.1 The simple pendulum
The mass of the pendulum can be considered to oscillate along the arc 𝑠 (Figure 5.1),
where the restoring force becomes 𝑚𝑔 sin 𝜙. This force then causes an acceleration
along the arc, d2𝑠

d𝑡2 , with the equation of motion becoming:

𝑚𝑔 sin 𝜙 = −𝑚d2𝑠
d𝑡2 (5.1)

This however relates the variable 𝜙 relative to the arc length 𝑠; it is more useful to
relate this to a single variable. We can derive an expression for this oscillation with
respect to angle as follows:

• The arc length 𝑠 can be calculated as 𝑠 = 𝐿𝜙.
• The second derivative of 𝑠 with respect to time can then be found:

d2𝑠
d𝑡2 = 𝐿d2𝜙

d𝑡2 (5.2)

We can then substitute this into Equation 5.1:

𝑚d2𝑠
d𝑡2 = 𝑚𝐿d2𝜙

d𝑡2 = −𝑚𝑔 sin 𝜙 (5.3)

A quick rearrangement gives us the equation of motion for a simple pendulum.

d2𝜙
d𝑡2 = − 𝑔

𝐿 sin 𝜙 (5.4)

For small displacements (small 𝜙), the equation of motion can be considered as in
Equation 5.5:

d2𝜙
d𝑡2 = − 𝑔

𝐿 sin 𝜙 ≈ −𝑔𝜙
𝐿 for small 𝜙 (5.5)

This is SHM, with angular frequency 𝜔 and period 𝑇 found as in Equation 5.6:

𝜔2 = 𝑔
𝐿 𝑎𝑛𝑑 𝑇 = 2𝜋√𝐿

𝑔 (5.6)

The solution for the equation of motion of this system then becomes Equation 5.7:

𝜙 = 𝜙0 cos(𝜔𝑡 + 𝛿) (5.7)
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…where 𝜙0 is the amplitude of the system and 𝛿 is the phase constant. Notice that,
for the pendulum we express the amplitude in terms of the angle of the string rather
than an absolute distance (shown as 𝑠 in Figure 5.1).

5.2 The Physical Pendulum
Many oscillating systems demonstrate rotational oscillations under gravity akin to
the simple pendulum. In this case, the system rotates around a pivot, 𝑃 , and this
can then be considered as a pendulum with the centre of mass acting as the ‘bob’.
An example of a general system is shown in Figure 5.2.

P

C

D
ϕ

D sinϕ

Mg

1
Figure 5.2: A physical pendulum, consisting of a physical object of mass 𝑀 swinging
on a pivot through point 𝑃 of length 𝐿. At angle 𝜙, the weight of the mass 𝑀𝑔
can again be resolved into components to determine the mechanics of the system.

Now, as a restoring force, we consider the torque of the centre of mass around
the pivot. Remember that the torque is defined as the product of the force and
the perpendicular distance of the force’s line of action from the pivot. If
using vectors, this is considered as the cross product of the force vector F with
the position vector of the centre of mass from the pivot, D (Equation 5.8):

Torque about pivot 𝑃 = D × F
= n̂ |𝐷||𝐹 | sin 𝜙
= n̂ 𝐷𝑚𝑔 sin 𝜙 = 𝜏 n̂

(5.8)

In this case, the unit vector n̂ is perpendicular to the plane of rotation and is included
for completeness’ sake. What we are interested in is the magnitude of this torque
vector, 𝜏 .
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Recall from rotational motion that the angular acceleration 𝛼 and the torque 𝜏 are
connected via the moment of inertia 𝐼 (Equation 5.9):1

𝐼 d2𝜙
d𝑡2 = 𝐼𝛼 = 𝜏

= −𝑚𝑔𝐷 sin 𝜙
(5.9)

We now approximate this for small 𝜙:

d2𝜙
d𝑡2 = −𝑚𝑔𝐷𝜙

𝐼 = −𝜔2𝜙

This allows us to identify expressions again for the angular frequency, 𝜔, and the
period 𝑇 (Equation 5.10):

𝜔2 = 𝑚𝑔𝐷
𝐼 𝑎𝑛𝑑 𝑇 = 2𝜋√ 𝐼

𝑚𝑔𝐷 (5.10)

We can compare this result with that for the simple pendulum shown in Equation 5.6;
if we remember that the moment of inertia 𝐼 is defined as 𝐼 = 𝑚𝐷2, we can
substitute this into Equation 5.10 and see that this is a general case for any rotating
body:

𝑇simple pendulum = 2𝜋√𝐼simple pendulum

𝑚𝑔𝐷 = 2𝜋√ 𝑚𝐷2

𝑚𝑔𝐷 = 2𝜋√𝐷
𝑔

…giving us our expected result (where the general term 𝐷 can be replaced for the
length of the simple pendulum, 𝐿).

5.3 The Double Pendulum
The double pendulum is a case study for a particular type of coupled oscillator; we
take a simple pendulum (a light rod suspended from a pivot with a mass 𝑚1 at the
end), and couple to it a second simple pendulum with mass 𝑚2; the pivot of this
second pendulum being 𝑚1. It is a deceptively complex problem, as it looks from the
outset to be fairly simple. However, we rapidly find that while at small amplitudes,
the oscillations are predictable, as the amplitude increases, tiny variations in the
starting conditions for the pendulum can have wildly different effects, and solving
the equations of motion is anything but trivial.

1Note that the appearance of the negative sign indicates that the torque force is opposite to
the direction of increasing 𝜙
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Chapter 6

From Coupled Oscillators to
Wave Motion

We started our explorations of oscillations and waves by acknowledging the inher-
ent connection between the two. We have seen that harmonic oscillations can be
described by sinusoidal functions (sine ansd cosine functions), and we know that
sinusoidal functions take the form of a wave. However it may not be immediately
clear how we get from the oscillation of a single particle to an organised group os-
cillation creating a wave which is capable of transmitting energy across space. We
will now examine this process.

6.1 Coupled masses on a string under tension
In this example we will consider a system consisting of a number of equally spaced
masses on a light string; these behave as coupled oscillators perpendicular to the
axis of the string. We consider the string to be fixed at both ends and the masses
to be separated by a fixed horizontal distance 𝑎 (Figure 6.1)

 

T T T T T Tm

m
m

1

Figure 6.1: A system of equally spaced masses on a tensioned string. The masses
are equally spaced, and undergo oscillations perpendicular to the axis of the string.

In order to develop the equations of motion here, we need to take a number of
steps:
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• Knowing the masses only oscillate vertically, we need to find the vertical
component of the tension for each mass

• We use this to determine the equation of motion for a given mass on the
string

• Finally, we look at what happens to each mass along a string.
Let’s take each step in turn

6.1.1 Consolidating the forces
Let’s consider the mass in the middle of Figure 6.1. We will label this arbitrary 𝑗th
mass 𝑗. We consider the forces on it along the string towards the (𝑗 − 1)th and
(𝑗 + 1)th mass. To do this, we identify a few lengths and the angles 𝜃1 and 𝜃2
(Figure 6.2):

 

yj−1
yj

yj+1

T Tm
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Figure 6.2: Consolidating the forces on the middle mass, mass 𝑗. We consider
everythign relative to the 𝑦 position of this oscillator and the effect of the masses
to either side. The angles 𝜃1 and 𝜃2 indicate the angles the forces make to the
horizontal.

The vertical component of the tension to the left will be given by 𝑇 sin 𝜃1, while
the vertical component of the tension to the right will be given by 𝑇 sin 𝜃2.
Through the small-angle approximation, we can say:

tan 𝜃1 = (𝑦𝑗−1 − 𝑦𝑗)
𝑎 ≈ sin 𝜃1 (6.1)

tan 𝜃2 = (𝑦𝑗+1 − 𝑦𝑗)
𝑎 ≈ sin 𝜃2 (6.2)

The total force acting on the mass therefore becomes

𝐹total = 𝑇 (sin 𝜃1 + sin 𝜃2)
= 𝑇 ( (𝑦𝑗−1−𝑦𝑗)

𝑎 + (𝑦𝑗+1−𝑦𝑗)
𝑎 ) (6.3)

6.1.2 The equations of motion
Now that we have identified the vertical force acting on our mass (Equation 6.3) we
can now write our equation of motion. We assume that this will be simple harmonic
motion, therefore we can write our equation of motion for the 𝑗th mass as:
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𝑚d2𝑦𝑗
d𝑡2 = 𝑇 ((𝑦𝑗−1 − 𝑦𝑗)

𝑎 + (𝑦𝑗+1 − 𝑦𝑗)
𝑎 ) (6.4)

…or…
d2𝑦𝑗
d𝑡2 = 𝑇

𝑚𝑎(𝑦𝑗−1 − 2𝑦𝑗 + 𝑦𝑗+1) (6.5)

Note

We have not placed a negative sign in Equation 6.4 in front of the force to
indicate a restoring force. However, remember that we find our force using
the parameters (𝑦𝑗−1 −𝑦𝑗) or (𝑦𝑗+1 −𝑦𝑗). In the example shown in Figure 6.2,
𝑦𝑗 < 𝑦𝑗−1 and 𝑦𝑗 < 𝑦𝑗+1, so we expect a positive value, so a positive force.
If the situation is reversed, and 𝑦𝑗 > 𝑦𝑗−1 and 𝑦𝑗 > 𝑦𝑗+1, we would expect a
negative value to arise, giving a negative value for the force.
(While the sinusoidal functions are periodic, we are only concerned for values
of 𝜃 in the range −𝜋

2 < 𝜃 < 𝜋
2 ).

Warning

Note: remember that the 𝑎 in Equation 6.23 is the separation between the
masses on the tensioned string, not the acceleration!

Let’s now use the approach used previously; insert a trial function into the equation
of motion. Assuming simple harmonic motion again, we use the trial function
𝑦𝑗 = 𝐴𝑗 cos(𝜔𝑡 + 𝛿), where 𝐴𝑗 is the maximum amplitude of vibration. We can
also use the trial functions 𝑦𝑗−1 = 𝐴𝑗−1 cos(𝜔𝑡 + 𝛿) and 𝑦𝑗+1 = 𝐴𝑗+1 cos(𝜔𝑡 + 𝛿).
We can place these into Equation 6.23 as follows:

d2𝑦𝑗
d𝑡2 = 𝑇

𝑚𝑎(𝑦𝑗−1 − 2𝑦𝑗 + 𝑦𝑗+1)
−𝜔2𝐴𝑗 cos(𝜔𝑡 + 𝛿) = 𝑇

𝑚𝑎(𝐴𝑗−1 − 2𝐴𝑗 + 𝐴𝑗+1) cos(𝜔𝑡 + 𝛿)
−𝜔2𝐴𝑗 = 𝑇

𝑚𝑎(𝐴𝑗−1 − 2𝐴𝑗 + 𝐴𝑗+1)
(6.6)

This can then be reformulated into our key result:

−𝐴𝑗−1 + (2 − 𝑚𝑎𝜔2

𝑇 ) 𝐴𝑗 − 𝐴𝑗+1 = 0 (6.7)

6.2 The overview
In considering the case for each of 𝑛 oscillating masses connected by a tensioned
string, it is all very much looking like a coupled oscillator system, akin to that
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introduced in Section 4.8. We would therefore expect to have a set of 𝑛 coupled
equations, which in turn will give 𝑛 different values of 𝜔2. We can apply the matrix
methods we introduced in Section 4.8, however let’s just look at the first two cases
(one mass and two masses).

6.2.1 A single mass on a tensioned string (𝑛 = 1)
This is a fairly straightforward analysis. Adapting Equation 6.7, 𝐴𝑗−1 and 𝐴𝑗+1
reduce to zero as these represent the fixed ends of the string. Our fundamental
equation therefore becomes:

−𝐴0 + (2 − 𝑚𝑎𝜔2
𝑇 ) 𝐴1 − 𝐴2 = 0

(2 − 𝑚𝑎𝜔2
𝑇 ) 𝐴1 = 0

…with the result that

𝜔2 = 2𝑇
𝑚𝑎 (6.8)

We therefore have a single vibrational frequency, 𝜔 when we have a single mass
oscillating on a tensioned string. This is not a great surprise, and is easily visualised.

6.2.2 Two masses on a tensioned string, 𝑛 = 2:
If we have two masses on the string, we now need to consider the respective equa-
tions for the first (𝑗 = 1) and the second (𝑗 = 2) masses.

• For 𝑗 = 1:
– 𝐴0 = 0

• For 𝑗 = 2:
– 𝐴3 = 0

Equation 6.7 then becomes:

−𝐴0 + (2 − 𝑚𝑎𝜔2
𝑇 ) 𝐴1 − 𝐴2 = 0

−𝐴1 + (2 − 𝑚𝑎𝜔2
𝑇 ) 𝐴2 − 𝐴3 = 0

which, when we apply the boundary conditions for 𝐴0 and 𝐴3, becomes:

{(2 − 𝑚𝑎𝜔2
𝑇 ) 𝐴1 − 𝐴2 = 0

−𝐴1 + (2 − 𝑚𝑎𝜔2
𝑇 ) 𝐴2 = 0 (6.9)

This is simply a pair of simultaneous equations in 𝐴1 and 𝐴2; substituting through
to eliminate 𝐴2, we arrive at the result:

62



𝐴1 [(2 − 𝑚𝑎𝜔2

𝑇 )
2

− 1] = 0

(2 − 𝑚𝑎𝜔2

𝑇 )
2

− 1 = 0

This now factorises:

(2 − 𝑚𝑎𝜔2

𝑇 + 1) (2 − 𝑚𝑎𝜔2

𝑇 − 1) = 0

This shows that we end up with two possible solutions for 𝜔2:

𝜔2
1 = 𝑇

𝑚𝑎 and 𝜔2
2 = 3𝑇

𝑚𝑎 (6.10)

These are the frequencies corresponding to the normal modes of vibration on the
string; note that while the values are different to the coupled oscillator model
in Chapter 4, the principle is the same - where two oscillating masses give two
characteristic frequencies, each corresponding to a specific normal mode.

6.2.3 The general case, 𝑛 masses on a tensioned string:
Let’s return to our fundamental equation (Equation 6.7):

−𝐴𝑗−1 + (2 − 𝑚𝑎𝜔2

𝑇 ) 𝐴𝑗 − 𝐴𝑗+1 = 0

From Equation 6.8 for a single mass on a string we note that 𝜔2
1 = 2𝑇

𝑚𝑎 ; therefore
the term 𝑇

𝑚𝑎 is intrinsically linked to a frequency. Let’s therefore define this as a
fundamental frequency, 𝜔0. We now use this reformulate our fundamental equation
to isolate the 𝐴 terms

𝐴𝑗−1 + 𝐴𝑗+1
𝐴𝑗

= 2 − 𝑚𝑎𝜔2

𝑇 = 2𝜔2
0 − 𝜔2

𝜔2
0

(6.11)

In Equation 6.11, the frequency 𝜔 represents any normal mode frequency; therefore
for any fixed value of this the right-hand side of the equation is a constant regardless
of which oscillating mass we are considering. So; can we solve the equation to find
a value for the amplitude of the oscillation of the 𝑗th mass, 𝐴𝑗?
From our coupled oscillator case in Chapter 4, we saw that for two oscillating masses
in a coupled system, the amplitude varied sinusoidally (Equation 4.25, graphed in
Figure 4.7). Let’s therefore assume that there is a general solution for the amplitude
of the 𝑗th mass, 𝐴𝑗.
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𝐴𝑗 = 𝐵 sin(𝑗𝜙) (6.12)

In this, 𝐵 is a constant and 𝜙 is some constant value for a value of 𝜔𝑗. Let’s now
place this into Equation 6.11:

𝐴𝑗−1 + 𝐴𝑗+1
𝐴𝑗

= 𝐵 [sin([𝑗 − 1]𝜙) + sin([𝑗 + 1]𝜙)]
𝐵 sin(𝑗𝜙)

= sin(𝑗𝜙) cos 𝜙 + sin 𝜙 cos(𝑗𝜙) + sin(𝑗𝜙) cos 𝜙 − sin 𝜙 cos(𝑗𝜙)
sin(𝑗𝜙)

= 2 cos 𝜙
(6.13)

What does this result mean? It shows us that the ratio of the amplitudes has a
constant value, independent of the number of masses oscillating on the string. Note
that the value of 𝜙 is dependent on which oscillating element we are considering;
but to subscript 𝜙𝑗 onto everything would make it even more untidy!
Now, if we can identify values for 𝜙, this will allow us to determine the allowed
expressions for 𝜔, the frequencies of the normal modes in the system.

6.2.4 Finding the amplitude of the 𝑗th element
In Equation 6.13 we have presented the general solution for the amplitude ratios of
the 𝑗th element of an oscillating system:

𝐴𝑗−1 + 𝐴𝑗+1
𝐴𝑗

= 2 cos 𝜙𝑗 (6.14)

To find an expression for 𝜙𝑗, we can use our boundary conditions, namely that
𝐴0 = 𝐴𝑛+1 = 0, and use this with the trial function 𝐴𝑗 = 𝐵 sin(𝑗𝜙):

{𝐴0 = 𝐵 sin 0𝜙 = 0
𝐴𝑛+1 = 𝐵 sin(𝑛 + 1)𝜙 = 0 (6.15)

The first case is not particularly useful; let’s instead look at the second case. The
boundary condition of the sine function being equal to zero gives us the following:

𝐵 sin(𝑛 + 1)𝜙 = 0
sin(𝑛 + 1)𝜙 = 0 (6.16)

For this to be true, then:

(𝑛 + 1)𝜙𝑚 = 0, 𝜋, 2𝜋, … , 𝑟𝜋 (6.17)
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…where 𝑟 is simply an arbitrary integer. This then gives us an expression for the 𝑟th
value of 𝜙𝑟 in an 𝑛-oscillator system. This gives our values of 𝜙𝑟 as:

𝜙𝑟 = 𝑟𝜋
𝑛 + 1 (6.18)

Putting this back into the trial function we proposed (𝐴𝑗 = 𝐵 sin(𝑗𝜙)), we find
that the amplitude of the 𝑗th mass at a fixed normal mode frequency 𝜔𝑟 to be:

𝐴𝑗 = 𝐵 sin 𝑗𝑟𝜋
𝑛 + 1 (6.19)

6.2.5 Identifying the allowed frequencies
We can now use the expression for 𝜙𝑟 presented in Equation 6.18 and place this
into Equation 6.13 and Equation 6.11

𝐴𝑗−1 + 𝐴𝑗+1
𝐴𝑗

= 2𝜔2
0 − 𝜔2

𝑟
𝜔2

0
= 2 cos 𝜙𝑟 = 2 cos 𝑟𝜋

𝑛 + 1

We can then solve this for the frequency of the 𝑟th vibrational mode (𝜔𝑟) within
the system:

2𝜔2
0 − 𝜔2

𝑟
𝜔2

0
= 2 cos 𝑟𝜋

𝑛 + 1
2 − 𝜔2

𝑟
𝜔2

0
= 2 cos 𝑟𝜋

𝑛 + 1
𝜔2

𝑟 = 2𝜔2
0 [1 − cos 𝑟𝜋

𝑛 + 1]

(6.20)

Alphabet soup!

We’ve used a lot of subscripts, so it is worth taking a bit of time to remind
ourselves what we have used.

• 𝑛 - We have 𝑛 oscillators on our tensioned string, which will give 𝑛
normal vibrational modes of the system.

• 𝑗 - This is the label for the 𝑗th oscillator in our 𝑛-oscillator system. e.g.
In a system of ten oscillators (𝑛 = 10), we may be looking at the fourth
oscillating mass (𝑗 = 4).

• 𝑟 - This is the label for the normal mode frequency of interest. So in a
ten oscillator system (𝑛 = 10), there are ten normal modes. Within this,
we may be interested in the frequency of the sixth mode (𝜔𝑟, 𝑟 = 6).
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6.2.6 Tying it all together - the takeaway points
We’ve done a lot of derivation here, but what are the take-away points?

6.2.6.1 There is a maximum frequency of oscillation

Looking at Equation 6.20, there is a maximum frequency of oscillation available.
The cosine function can only vary between −1 and 1; when the cosine function is
equal to −1, then:

𝜔2
𝑟,max = 2𝜔2

0[1 − (−1)] = 4𝜔2
0

𝜔𝑟,max = 2𝜔0
(6.21)

This frequency is called a cutoff frequency and is a feature of many lattice vibrations.

6.2.6.2 The frequencies of normal modes of oscillation

From Equation 6.20 and the value of 𝜔0 = 𝑇
𝑚𝑎 , we can identify the frequency of

any normal mode of oscillation within the system:

𝜔2
𝑟 = 2𝜔2

0 [1 − cos 𝑟𝜋
𝑛 + 1]

= 2𝑇
𝑚𝑎 [1 − cos 𝑟𝜋

𝑛 + 1]
(6.22)

Therefore, if we know the tension 𝑇 in the string, the mass 𝑚 of the oscillating
masses (and that they are all the same mass), the number 𝑛 of masses and the
separation between the masses 𝑎, we can identify the frequency of a given mode.

6.3 From coupled oscillations to the wave equation
The final destination in considering such systems of coupled oscillators is to con-
sider “what happens when the coupled oscillators on a tensioned string are so close
together they can be considered continuous?”. Intuition (and indeed the title of this
course!) tells us that these should “of course” form a wave. But it can be helpful to
work through this and validate it appropriately. After all, what is a wave anyway?

6.3.1 Getting started
We need to firstly identify what we know about a given system. From Equation 6.23
we identified the equations of motion of the 𝑗th mass in an 𝑛-oscillator system:

d2𝑦𝑗
d𝑡2 = 𝑇

𝑚𝑎(𝑦𝑗−1 − 2𝑦𝑗 + 𝑦𝑗+1) (6.23)
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Alongside this, we also know that, for a system of 𝑛 oscillating masses on a tensioned
string, we will have 𝑛 normal modes of vibration; within this set of modes, any given
mode 𝑟 will have a specific frequency 𝜔𝑟. This means that, in a given vibration
mode, the 𝑦-displacement of each mass in the system will all have the same time
dependence
Finally, we know that the displacement 𝑦𝑗 of the 𝑗th element must depend on the
value of 𝑗; if it did not, we would only see the simplest vibrations as all elements
oscillate in concert, with 𝑦𝑗−1 = 𝑦𝑗 = 𝑦𝑗+1. Given that the value of 𝑗 is intrinsi-
cally connected to the 𝑥 coordinate (where 𝑥 = (𝑗 − 1

2)𝑎), we can say that the
displacement must depend on 𝑥.
Therefore, we can say that there are two independent variables which are factored
into the 𝑦-displacement; 𝑡 and 𝑥.

6.3.2 Reducing the spacing between elements
We have said that 𝑥 is related to the spacing between masses 𝑎 and the position in
the chain 𝑗 - so what happens as we reduce the spacing? Let’s apply our principles of
calculus, and reduce the spacing such that 𝑎 ≃ 𝜕𝑥 and let 𝜕𝑥 → 0. This makes 𝑥 a
continuous variable, and therefore the vertical displacement of an element becomes
dependent on 𝑥 and 𝑡; 𝑦(𝑥, 𝑡).
As we now have two independent variables, we will now need to enter the world of
partial derivatives.

6.3.3 Modifying the equations…
We will assume that any coupled oscillation in this new continuous system will still
be a sinusoidal function, but now dependent on 𝑥 as well as 𝑡. We propose it takes
the form:

𝑦(𝑥, 𝑡) = sin(𝑘𝑥 + 𝜔𝑡) (6.24)

For now, we will say that the term 𝑘 is there to keep the units of 𝑘𝑥 congruent with
the units of 𝜔𝑡; if the frequency 𝜔 is a “per second” (s−1) unit to cancel the time
unit of 𝑡, then 𝑘 must be a “per metre” unit (m−1) to cancel the length unit of 𝑥.
It has deeper meaning which we will come to later.
As 𝑥 is now a continuous variable, we can now return to Equation 6.23, and rewrite
this as:

𝜕2𝑦
𝜕𝑡2 = 𝑇

𝑚𝑎(𝑦𝑗−1 − 2𝑦𝑗 + 𝑦𝑗+1) (6.25)

We now need to consider the meaning of 𝑦𝑗−1, 𝑦𝑗 and 𝑦𝑗+1 in the context of a
continuously variable 𝑥. In Section 6.3.2 we said that the spacing 𝑎 reduced to 𝜕𝑥;
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we can therefore say:
• 𝑦𝑗 becomes 𝑦(𝑥, 𝑡)
• 𝑦𝑗−1 becomes 𝑦(𝑥 − 𝛿𝑥, 𝑡)
• 𝑦𝑗+1 becomes 𝑦(𝑥 + 𝛿𝑥, 𝑡)

We now use a Taylor series expansion on the function 𝑦(𝑥 ± 𝜕𝑥, 𝑡), and we obtain:

𝑦(𝑥 ± 𝛿𝑥, 𝑡) = 𝑦(𝑥) ± 𝛿𝑥 𝜕𝑦
𝜕𝑥 + 1

2(±𝛿𝑥)2 𝜕2𝑦
𝜕𝑥2

This is when we say “so what?” Well, if we remember the initial form of Equa-
tion 6.23, it was actually derived from:

d2𝑦𝑗
d𝑡2 = 𝑇

𝑚 (𝑦𝑗+1 − 𝑦𝑗
𝑎 − 𝑦𝑗 − 𝑦𝑗−1

𝑎 )

This immediately gives us an equation we can use our Taylor series expansion on:

𝜕2𝑦
𝜕𝑡2 = 𝑇

𝑚 (𝑦(𝑥 + 𝛿𝑥, 𝑡) − 𝑦(𝑥, 𝑡)
𝑎 − 𝑦(𝑥, 𝑡) − 𝑦(𝑥 − 𝛿𝑥, 𝑡)

𝑎 )

= 𝑇
𝑚 (𝛿𝑥 𝜕𝑦

𝜕𝑥 + 1
2(𝛿𝑥)2 𝜕2𝑦

𝜕𝑥2

𝛿𝑥 − 𝛿𝑥 𝜕𝑦
𝜕𝑥 − 1

2(𝛿𝑥)2 𝜕2𝑦
𝜕𝑥2

𝛿𝑥 )

= 𝑇
𝑚

(𝛿𝑥)2

𝛿𝑥
𝜕2𝑦
𝜕𝑥2

= 𝑇
𝑚(𝛿𝑥) 𝜕2𝑦

𝜕𝑥2

(6.26)

You may find it helpful to ensure you can follow through the cancellation steps in
this arrangement and verify your own understanding.

6.3.4 The Wave Equation
Our final step is to consider what the terms are in the final step in Equation 6.26,
in particular the 𝜕𝑥/𝑚 term. If we invert it to obtain 𝑚/𝜕𝑥, we have a “mass per
unit length”. This is often known as a ‘linear mass density’, and is usually assigned
the symbol 𝜌. When we place this into Equation 6.26, we obtain:

𝜕2𝑦
𝜕𝑡2 = 𝑇

𝜌
𝜕2𝑦
𝜕𝑥2 (6.27)

Equation 6.27 is the wave equation, and it is a tool we can use to verify the validity
of a wave function - if, when differentiated appropriately, a function can fit this
relation, then it is a valid wavefunction and can be used to describe a propagating
wave.
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A useful observation in the wave equation is that the 𝑇 /𝜌 term has units m2 s−2;
a speed squared. We may sometimes see this term replaced in the wave equation
with a 𝑣2 term, corresponding with the speed of propagation of the wave.
We will revisit the wave equation again in the future.

6.4 Summary of key points
We’ve covered a lot in this section, and it can be difficult to see the thread of the
discussion, so it is helpful to revisit the key points.

• The coupled oscillator model from Chapter 4 showed us that for two oscillators
coupled together, we would expect to see two normal modes of vibration,
each with a distinct frequency.

• We extended this to many masses on a tensioned string behaving as coupled
oscillators. The tension in the string is constant, however the angle of the force
on each mass varies as the string moves, inducing the transverse oscillation
of each mass.

• By considering the transverse component of the tension on each mass, we
could create the equations of motion. Solving these for the case of one mass
on a string, then two masses on a string, we verified that for 𝑛 masses, we
would expect to see 𝑛 characteristic frequencies.

• We determined an expression for the allowed frequencies and found that, while
we would obtain 𝑛 frequencies for an 𝑛-component system, there is an upper
limit to the frequency for any normal mode - this is the cut-off frequency

• Finally, we showed that, as we increase the number of oscillating masses and
reduce the space between them, the movement of the system becomes closer
and closer to a sinusoidal wave.
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Chapter 7

Simple wave motion and the
Wave Equation

Textbook link: Tipler and Mosca, Section 15.1
A wave is a means by which energy and momentum are carried through space,
without transporting matter. When we consider a medium which carries a wave,
the particles of that material oscillate about a mean position, but have an average
displacement of zero; i.e. they always return to their starting position. A wave can
be of any shape - there is no requirement for a wave to be sinusoidal, though this
is the simplest shape which we can consider mathematically.
We also consider waves to be either transverse; where the displacement of the
medium is perpendicular to the direction of wave propagation (e.g. a wave travelling
along a string), or they can be longitudinal; where the displacement of the medium
is parallel to the direction of propagation (e.g. a sound wave passing through air).

A note on transverse waves
In contrast with longitudinal waves, the medium carrying a transverse wave is dis-
placed perpendicular to the direction of travel. This gives rise to the phenomenon of
polarisation. A plane of polarisation is defined as a plane containing the displace-
ment direction and the direction of propagation. For any given transverse wave,
two orthogonal independent polarisations are possible. All other polarisations may
be constructed from weighted combinations of these two basic polarisations. For
electromagnetic waves, it is the electric field vector which defines the plane of
polarisation in combination with the direction of propagation. We will revisit these
properties of transverse waves as we go through our discussion.
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Figure 7.1: An animation to show the propagation of a wave through a material
arising from an organised transverse oscillation of many particles. The two marked
particles only move up and down, but the net effect of the organised motion is a
propagation of energy to the right.

x

Figure 7.2: An animation to show the propagation of a wave through a material
arising from an organised longitudinal oscillation of many particles. The marked
particle now moves in the direction of propagation, but oscillates around a fixed
point; the net effect of the organised motion is again a propagation of energy to
the right.
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7.1 Wave pulses
Where a wave is a sustained periodic disturbance which propagates energy through
a medium, a wave pulse in contrast is any localised non-periodic disturbance propa-
gating an energy pulse through the medium. A typical pulse is shown in Figure 7.3.
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Figure 7.3: A wave pulse propagating through a system at velocity 𝑣; this causes a
temporary transverse disturbance of molecules in the system from their origin.

We illustrate a pulse graphically as any function defined as 𝑦 = 𝑓(𝑥), where the +𝑥
direction is the direction of propagation of the pulse. If the pulse propagates without
changing shape, it becomes convenient to consider a moving reference frame within
which the pulse is stationary; i.e. rather than imagining the pulse moving to the
right along fixed axes, we keep the pulse stationary in our view and move the axes
to the left.
In the moving frame then, the pulse is described as 𝑦′ = 𝑓(𝑥′) for all times, because
the pulse does not change its shape.
We can inter convert between the two frames of reference by the relation:

𝑥 = 𝑥′ + 𝑣𝑡 (7.1)

…where 𝑣 is the velocity of the pulse. This allows us to convert the position in the
moving reference frame, 𝑥′, back to the position in the fixed reference frame by
adding the distance 𝑣𝑡.
If the shape of the pulse in the moving frame is defined as 𝑦′ = 𝑓(𝑥′) we can use
Equation 7.1 to find the shape of the pulse in the static frame, 𝑦:

𝑦 = 𝑓(𝑥′)
= 𝑓(𝑥 − 𝑣𝑡) (7.2)

The relation described in Equation 7.2 describes a wave moving to the RIGHT; for
a pulse moving to the left, 𝑣 becomes negative, and hence:

72



Figure 7.4: Rather than imagining a moving wave pulse, we can consider it from
the reference frame of the wave pulse; in this example the wave pulse is stationary,
but the space moves past it.
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Figure 7.5: A wave pulse propagating through a system at velocity 𝑣; this causes a
temporary transverse disturbance of molecules in the system from their origin.
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𝑦 = 𝑓(𝑥 + 𝑣𝑡)

The function 𝑦 = 𝑓(𝑥 ± 𝑣𝑡) is known as the wave function; it describes the
displacement of the medium, whether the transverse displacement of a string or the
longitudinal displacement of air molecules in a sound wave.1.
The wave function is a solution of the wave equation (Equation 7.3):2

𝜕2𝑦
𝜕𝑥2 = 1

𝑣2
𝜕2𝑦
𝜕𝑡2 (7.3)

Any function in the form 𝑦 = 𝑓(𝑥 ± 𝑣𝑡) is a solution of this wave equation; i.e. the
wave equation describes the uniform propagation of any displacement, provided it
does not change shape as it travels. There are numerous examples of such functions,
including:

• 𝑦 = exp(𝑥 − 𝑣𝑡)2

• 𝑦 = sin(𝑥−𝑣𝑡)
𝑥−𝑣𝑡

• 𝑦 = cos(𝑥 + 𝑣𝑡)

7.2 Deriving the wave equation
To better understand the wave equation, it is useful to know its derivation. To do
this, we shall first consider a segment of string from a curved part of a wave pulse
(Figure 7.6):

F

F

Δ

Δy

θ2

θ1

1
Figure 7.6: Here we consider a small portion of a string carrying a wave pulse;
the tension in the string 𝐹 is constant throughout, but resolving the forces via the
angles 𝜃1 and 𝜃2 allows us to determine the equation of motion on this segment.

1It may seem counter intuitive that, for a wave moving with positive 𝑣in the +𝑥 direction, we
subtract 𝑣𝑡; but try thinking this way: after time 𝑡, the wave will have advanced further to the
right. If, after one second, the shape of the wave has its peak at 𝑥𝑎, after three seconds, the peak
will have advanced to 𝑥𝑏 = 𝑥𝑎 + 𝑣𝑡; however, the value of the wavefunction at 𝑥𝑎 at this new
time (𝑥′

𝑎) will have come from the value of the wavefunction three seconds earlier, to the left of
the point; i.e. 𝑥′

𝑎 = 𝑥𝑎 − 𝑣𝑡
2The 𝜕 symbol refers to partial differentiation.

74



The length of this segment is ≈ Δ𝑥 (for small angles), and the mass of this segment
of string 𝑚 = 𝜇Δ𝑥 (where 𝜇 is the mass per unit length). As we are considering a
transverse wave, this segment of string will move vertically, and all forces acting on
the segment arise from the tension force within the string. We can determine these
forces by resolving the horizontal and vertical components of this force 𝐹 using the
parameters laid out in Figure 7.6.
By considering the net vertical force acting on this segment:

∑ 𝐹 = 𝐹 sin 𝜃2 − 𝐹 sin 𝜃1
= 𝐹 (tan 𝜃2 − tan 𝜃1) for small angles (7.4)

We can also determine an expression for the slope, 𝑆, of the segment of string at a
given point:

𝑆 = tan 𝜃 = 𝜕𝑦
𝜕𝑥 (7.5)

This means we can now express the overall force acting on the segment in terms of
the slope of the segment at its start and end points (assuming small angles!) by
combining Equation 7.4 and Equation 7.5 :

∑ 𝐹 = 𝐹(𝑆2 − 𝑆1) = 𝐹Δ𝑆 (7.6)

The quantity 𝐹Δ𝑆 in Equation 7.6 is the net force acting on the segment; so we
can now apply Newton’s second law:

𝐹Δ𝑆 = 𝑚𝑎 = 𝜇Δ𝑥𝜕2𝑦
𝜕𝑡2 (7.7)

…or, to rearrange:

Δ𝑆
Δ𝑥 = 𝜇

𝐹
𝜕2𝑦
𝜕𝑡2 (7.8)

Since the slope Δ𝑆 of the segment is the ‘rate of change of 𝑦 with respect to 𝑥’
(Equation 7.5), we can redefine the term in Equation 7.7; in the limit, as Δ𝑥 → 0:

Δ𝑆
Δ𝑥 ≈ 𝜕𝑆

𝜕𝑥 = 𝜕
𝜕𝑥 ( 𝜕𝑦

𝜕𝑥) = 𝜕2𝑦
𝜕𝑥2 (7.9)

Finally, by combining this result in Equation 7.9 with the result in Equation 7.8),
we obtain the wave equation for a stretched string (Equation 7.10):
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𝜕2𝑦
𝜕𝑥2 = 𝜇

𝐹
𝜕2𝑦
𝜕𝑡2 (7.10)

As we mentioned in Section 7.1, any function of the form 𝑦 = 𝑓(𝑥 ± 𝑣𝑡) will be a
solution to the wave Equation 7.10. In the case of the string, the solution will solve
the wave equation provided that 𝑣2 = 𝐹

𝜇 .

7.3 The wave equation - proof by substitution
In this section, we will show the proof of the wave equation which we determined
graphically in Section 7.2. Here we will use partial differentiation, explaining the 𝜕
notation we have already seen in this work.3

Let’s work through this step by step:
1. Consider the general function 𝑦 = cos(𝑥 − 𝑣𝑡). Differentiate this first with

respect to 𝑥:

𝜕𝑦
𝜕𝑥 = − sin(𝑥 − 𝑣𝑡)

The second derivative therefore becomes:

𝜕2𝑦
𝜕𝑥2 = − cos(𝑥 − 𝑣𝑡) (7.11)

2. Now we differentiate with respect to time 𝑡:

𝜕𝑦
𝜕𝑡 = 𝑣 sin(𝑥 − 𝑣𝑡)

… and find the second derivative:

𝜕2𝑦
𝜕𝑡2 = −𝑣2 cos(𝑥 − 𝑣𝑡) (7.12)

3. We can now combine Equation 7.11 and Equation 7.12 to eliminate the term
cos(𝑥 − 𝑣𝑡), we obtain the wave equation as required:

𝜕2𝑦
𝜕𝑥2 = 1

𝑣2
𝜕2𝑦
𝜕𝑡2 (7.13)

3Partial differentiation is needed when we have multivariate expressions. We can only differenti-
ate one variable at a time, so partial differentiation indicates that we are holding all other variables
constant. In our wave equations, we have position and time variables, so when differentiating 𝑥
with respect to 𝑦, we are holding the time 𝑡 constant.
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Through unpacking of Equation 7.13 we can uncover how it might be adapted to
obtain wave equations for other systems. The term 𝑥 represents the direction of
propagation of the wave, while 𝑦 represents the disturbance of the particle carrying
the wave (in the case of a transverse wave, this is perpendicular to the direction of
propagation).
For longitudinal sound waves, Equation 7.13 becomes:

𝜕2𝑠
𝜕𝑥2 = 1

𝑣2𝑠

𝜕2𝑠
𝜕𝑡2 (7.14)

In this example, 𝑠 is the displacement of molecules of the medium parallel to the
direction of the propagation, while 𝑣𝑠 is the velocity of sound in the medium.
For electromagnetic waves, Equation 7.13 becomes either:

𝜕2𝐸𝑧
𝜕𝑥2 = 1

𝑐2
𝜕2𝐸𝑧
𝜕𝑡2 (7.15)

…or

𝜕2𝐵𝑦
𝜕𝑥2 = 1

𝑐2
𝜕2𝐵𝑦
𝜕𝑡2 (7.16)

…where 𝐸𝑧 and 𝐵𝑦 are the transverse components of the electric and magnetic field
vectors (we will discuss this further later), and 𝑐 is the speed of light.
Note: The speed of propagation cannot be deduced from the wave equation, instead
it must be obtained from a model of the system concerned.

7.4 The Phase Velocity - the velocity of waves
We define the phase velocity as the speed of propagation of any particular point
on a wave. Since the wave propagates without changing shape, it does not matter
which point we pick.
The phase velocity will depend on a combination of the elastic and inertial terms.
For waves travelling on a string the phase velocity can be found from the tension in
the string (𝐹 ) and the linear mass density (mass per unit length) of the string (𝜇):

𝑣 = √𝐹
𝜇

This has parallels for sound waves in a fluid, with phase velocity found from the
bulk modulus 𝐵 (a factor describing the fluid’s resistance to compression) and the
equilibrium density 𝜌 of the fluid:
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Figure 7.7: A reminder that every point in a wave pulse here moves at the same
velocity 𝑣, such that the shape of the pulse is not changed.

𝑣𝑠 = √𝐵
𝜌

We can go further to look at the propagation of sound waves in an isotropic solid
(solid of constant composition) - however we can only use this to consider a thin
section, not a bulk solid (this is an acceptable model for considering earth tremors
in the Earth’s crust). This time the phase velocity depends on the density of the
solid 𝜌 and either the Young’s modulus (𝑌 , for longitudinal P waves) or the shear
modulus (𝐺, for transverse S waves):

𝑣𝑠 = √𝑌
𝜌 or√𝐺

𝜌

These equations describe how wave phase velocities can be determined in solids and
liquids; in a gas, we need to use other parameters, however the core relationship is
still familiar:

𝑣𝑠 = √𝛾𝑅𝑇
𝑀 = √𝛾𝑘B𝑇

𝑚

Here, the terms 𝑅, 𝑇 and 𝑀 refer to the gas constant (units J K-1 mol-1), absolute
temperature (units K) and the molar mass of the gas (units kg mol-1) respectively4,
while 𝑘B and 𝑚 refer to the Boltzmann constant (units J K-1) and the mass of an
individual gas molecule (units kg).
Finally, we can obtain a similar expression for the phase velocity of light waves:

4Note that the molar mass is expressed in kg mol-1 here, rather than the more common g mol-1
; the reason for this is to ensure continuity and present everything in SI units.
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𝑐 = √ 1
𝜇0𝜖0

…where 𝜇0 and 𝜖0 are the permeability of free space and the permittivity of free
space respectively.

7.5 Simple wave summary
In this chapter, we have introduced the principle of waves and the wave equation.
Waves carry energy and momentum through space by localised organised oscillations
without net transport of matter. They can be transverse (oscillation perpendicular
to direction of propagation) or longitudinal (oscillation parallel to direction of prop-
agation), or can have a more complex displacement pattern. Waves do not have to
be sinusoidal, and can have any shape.
Any travelling wave can be described by the function in the form of 𝑦 = 𝑓(𝑥 ± 𝑣𝑡)
which satisfies the wave equation, relating the displacement of the medium (𝑦) to
the position of the wave (𝑥) and the phase velocity (𝑣).

𝜕2𝑦
𝜕𝑥2 = 1

𝑣2
𝜕2𝑦
𝜕𝑡2

Remember that the phase velocity cannot be predicted from the wave equation, but
depends on the physics of the system. It generally results from a consideration of
the elastic and inertial properties of the system. For waves on a string, 𝑣 = √𝐹

𝜇 ,
where 𝐹 is the tension in the string and 𝜇 is the mass per unit length (linear mass
density).
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Chapter 8

Harmonic Waves

Textbook link: Tipler and Mosca, Section 15.2
A harmonic wave is a general term for a wave which, at some instant of time, can
be described by a sinusoidal function (i.e. it is a sine or a cosine function). They
are the simplest of waves to consider, and we will devote this chapter to exploring
their properties.

8.1 Transverse sine and cosine waves
If we consider a string which is excited by a tuning fork or other object undergoing
simple harmonic motion (SHM), we can imagine the shape of the save on the string
at some instant of time appearing as a sine or a cosine wave (depending on our
choice of origin) (Figure 8.1):
This sinusoidal appearance is known as a harmonic wave. Each point on the string
oscillates up and down with the same frequency as the driving frequency. During
the period 𝑇 , the wave moves through distance 𝜆:

𝑣 = 𝜆
𝑇 = 𝑓𝜆 (8.1)

…where 𝑣 is the phase velocity of the wave and 𝑓 is the frequency in hertz (Hz),
and 𝜆 defined as the wavelength i.e. the spacial repeat distance of the wave.
A harmonic wave has a unique frequency and wavelength, and other waves (e.g.
wave pulses) may be regarded as a superposition of many harmonic waves of different
frequencies (we will discuss the Fourier analysis of this later).
At any instant in time, the wave can be described by the relation in Equation 8.2:
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Figure 8.1: A sine wave in a string created by an oscillating particle. The wavelength
𝜆 is shown for one complete cycle, while the amplitude 𝐴 is defined as the maximum
deviation from the origin point.

𝑦 = 𝐴 sin(𝑘𝑥 + 𝛿) (8.2)

…where 𝐴 is the amplitude of the wave and 𝛿 is the phase constant. Let’s now
choose the origin so that 𝛿 is equal to zero (i.e. there is no phase constant). Now
we can show the periodic condition in Equation 8.3:

sin 𝑘𝑥 = sin 𝑘(𝑥 + 𝜆) (8.3)

Here we specify the periodic condition; the amplitude (and phase!) at position 𝑥 is
equal to the amplitude (and phase!) at position 𝑥 plus one wavelength. Because
this is a sine function, we know that, in order to achieve this condition, the value
𝑘𝜆 must be equal to 2𝜋:

sin 𝜃 = sin (𝜃 + 2𝜋)
sin 𝑘𝑥 = sin (𝑘𝑥 + 𝑘𝜆) = sin (𝑘𝑥 + 2𝜋)

𝑘𝜆 = 2𝜋
(8.4)

This allows us to give a value for 𝑘 (Equation 8.5):

𝑘 = 2𝜋
𝜆 (8.5)

The parameter 𝑘 is defined as the wave number of the wave, in units radians per
metre (rad m-1).
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8.2 Travelling waves
The wave we showed in Section 8.1 was a snapshot in time, so the wave was, in
effect, static. We instead wish to consider a travelling wave. To do this, instead
of writing 𝑥 as in Equation 8.2 with a phase difference, we rewrite with 𝑥 − 𝑣𝑡
(see Section 7.1) to illustrate the time-dependent nature of the travelling wave.
Equation 8.2 then becomes Equation 8.6:

𝑦 = 𝐴 sin 𝑘(𝑥 − 𝑣𝑡) = 𝐴 sin(𝑘𝑥 − 𝑘𝑣𝑡) (8.6)

As we have described, 𝑇 is the period of the wave, so any point on the wave will
oscillate up and down also with period 𝑇 . This means that, for the wave position
at time 𝑡, it will return to the same state at time (𝑡 + 𝑇 ). We can therefore write
Equation 8.6 in terms of this period:

𝑦 = 𝐴 sin (𝑘𝑥 − 𝑘𝑣𝑡) = 𝐴 sin (𝑘𝑥 − 𝑘𝑣(𝑡 + 𝑇 ))
= 𝐴 sin (𝑘𝑥 − 𝑘𝑣𝑡 − 𝑘𝑣𝑇 ) (8.7)

Applying the same reasoning as shown in Equation 8.4, we are led to the result:

𝑘𝑣𝑇 = 2𝜋

If we revisit our discussions on SHM (Section 1.7) we defined the relationship be-
tween 𝑇 and 2𝜋 (Equation 1.12) as 𝑇 = 2𝜋

𝜔 (and also 𝜔 = 2𝜋𝑓). This allows us
to define a number of factors as follows:

• Phase velocity:

𝑣 = 2𝜋
𝑘𝑇 = 𝜔

𝑘 (8.8)

• Travelling wave to the right:

𝑦 = 𝐴 sin (𝑘𝑥 − 𝑘𝑣𝑡) = 𝐴 sin (𝑘𝑥 − 𝜔𝑡) (8.9)
• Travelling wave to the left:

𝑦 = 𝐴 sin (𝑘𝑥 + 𝑘𝑣𝑡) = 𝐴 sin (𝑘𝑥 + 𝜔𝑡) (8.10)

It is worth noting for each of these factors:
1. The sign of 𝜔:

• negative for waves travelling to right;
• positive for waves travelling to left

2. The wave expressions can be shown to satisfy the wave equation by substitu-
tion.
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8.3 Complex representation of waves
We introduced complex numbers for descriptions of oscillations; we can use the
same treatment for our wave equations. Just as sin(𝑘𝑥 − 𝜔𝑡) and cos(𝑘𝑥 − 𝜔𝑡)
satisfy the wave equation, so too will ei(𝑘𝑥−𝜔𝑡). It is often convenient to write the
wave expression in a complex form as shown in Equation 8.11:

𝑦 = 𝐴ei(𝑘𝑥−𝜔𝑡) (8.11)

In this expression, the sine wave is given by the ‘imaginary’ component of 𝑦, while
the cosine part is given by the ‘real’ component.

8.4 Energy carried by waves on a string
Suppose we now have a string attached to an oscillating driver at one end. As the
driver oscillates, it imparts energy to the string at 𝑥 = 0 by:

1. Stretching the string to give it potential energy, and
2. imparting transverse speed to the string to increase its kinetic energy.

As the waves move along the string, so the energy is transported along the string.

8.4.1 Potential energy of string segment
We now consider the same string segment as we showed in Figure 7.6, but now we
consider it stretched (Figure 8.2). We can picture this as the string is “relaxed”
in its ‘horizontal’ orientation (length of segment is Δ𝑥), but when a wave passes
along it, the string elongates to accommodate the curve of the wave form. This
means our segment now takes on a new length Δ𝑙.

Δ

F

F

Δ

Δy

1
Figure 8.2: As the wave passes along a stretched string, we can consider it to be
‘stretched’; considering a string element of lencth Δ𝑥, it is stretched to new length
Δ𝑙 as the wave passes by.

The work done (�U) in stretching the segment Δ𝑥 can be expressed as:

Δ𝑢 = 𝐹(Δ𝑙 − Δ𝑥) (8.12)
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…where 𝐹 is the tension in the string and the extension is given by (Δ𝑙 − Δ𝑥). We
can apply Pythagoras to relate Δ𝑥 and Δ𝑙:

Δ𝑙2 = Δ𝑥2 + Δ𝑦2

= Δ𝑥2 [1 + ( Δ𝑦
Δ𝑥)

2
]

Therefore we can isolate Δ𝑙:

Δ𝑙 = Δ𝑥 [1 + ( Δ𝑦
Δ𝑥)

2
]

1
2

We can approximate this expression by using the Taylor series expansion for
√1 + 𝑛,

where 𝑛 = ( Δ𝑦
Δ𝑥)

2
; assuming that the fraction is significantly less than one we can

write this as an approximation and disregard terms past the first two terms:1

Δ𝑙 ≈ Δ𝑥 [1 + 1
2 ( Δ𝑦

Δ𝑥)
2

+ ⋯]

Rearranging this expression to obtain the expression for the extension of the string
Δ𝑙 − Δ𝑥:

Δ𝑙 − Δ𝑥 ≈ +Δ𝑥
2 ( Δ𝑦

Δ𝑥)
2

+ ⋯

This now allows us to obtain an expression for the work done in stretching the spring
solely in terms of the 𝑥 and 𝑦 displacement (from Equation 8.12)

Δ𝑈 = 𝐹Δ𝑥
2 ( Δ𝑦

Δ𝑥)
2

As we have an expression for 𝑦 in terms of 𝑥 (Equation 8.2), we can differentiate
this with respect to 𝑥 to approximate Δ𝑦

Δ𝑥 :

Δ𝑦
Δ𝑥 ≃ d𝑦

d𝑥 = 𝑘𝐴 cos(𝑘𝑥 − 𝜔𝑡)

We also know that 𝑣2 = 𝐹
𝜇 (from the wave equation), and that 𝑣 = 𝜔

𝑘 (Equa-
tion 8.8), therefore:

1The Taylor expansion for this expression is
√1 + 𝑛 = 1 + 𝑛

2 − 𝑛2
8 + 𝑛3

16 − ⋯
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Δ𝑈 = 1
2 (𝜇𝜔2

𝑘2 ) Δ𝑥 (𝑘𝐴 cos(𝑘𝑥 − 𝜔𝑡))2

Tidying up and cancelling, we obtain the expression for the potential energy stored
in an element of string of length Δ𝑥 (Equation 8.13):

Δ𝑈 = 1
2𝜇𝜔2𝐴2Δ𝑥 cos2(𝑘𝑥 − 𝜔𝑡) (8.13)

8.4.2 Kinetic energy of string segment
We will again consider the segment of string discussed in Section 8.4.1; an element
Δ𝑥 of the string, of mass Δ𝑚 (Figure 8.3).

Δ

F

F

Δ

Δy

y

1
Figure 8.3: Similar to the situation shown above, the same string segment will have
a kinetic energy associated with its velocity 𝑣𝑦.

As before, the segment is stretched to new length Δ𝑙, but the mass is still given by:

Δ𝑚 = 𝜇Δ𝑥

…where 𝜇 is the mass per unit length. We now use the transverse velocity of
the segment (i.e. not the wave velocity) to determine the kinetic energy of the
segment:

Δ𝐾𝐸 = 1
2Δ𝑚𝑣2

𝑦 = 1
2𝜇Δ𝑥 (d𝑦

d𝑡 )
2

Again, we know the expression for the vertical displacement 𝑦 in terms of 𝑥 and 𝑡
(Equation 8.6), so we now differentiate with respect to 𝑡:

• 𝑦 = 𝐴 sin(𝑘𝑥 − 𝜔𝑡)
• 𝑣𝑦 = d𝑦

d𝑡 = −𝜔𝐴 cos(𝑘𝑥 − 𝜔𝑡)
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Therefore our expression for the kinetic energy becomes:

Δ𝐾𝐸 = 1
2𝜇𝜔2𝐴2Δ𝑥 cos2(𝑘𝑥 − 𝜔𝑡) (8.14)

A quick comparison of Equation 8.13 and Equation 8.14 shows that these expressions
are identical; i.e. the KE stored in the string is the same as the PE stored in the
spring.

8.4.3 Total energy of wave on a string
We can therefore find the total energy of the string segment carrying a harmonic
wave as the total of the kinetic and potential energies:

Δ𝐸 = Δ𝐾𝐸 + Δ𝑈

i.e.:

Δ𝐸 = 𝜇𝜔2𝐴2Δ𝑥 cos2(𝑘𝑥 − 𝜔𝑡) (8.15)

Note that the energy of the segment varies with time with twice the frequency of
the wave (since cos2 𝜃 = 1

2(1 + cos 2𝜃)).
We can also define the average energy at any point (Equation 8.16) using the
time-average definition ⟨cos2 𝜃⟩ = 1

2 :

Δ𝐸av = 1
2𝜇𝜔2𝐴2Δ𝑥 (8.16)

…and we can define the average energy density (per unit length) as:

𝜀 = Δ𝐸av
Δ𝑥 = 1

2𝜇𝜔2𝐴2

There are several things to note from this derivation:
• KE is at a maximum when displacement is zero
• At this point the string is most stretched, so PE is at a maximum also
• PE and KE are in phase (unlike in a pendulum)

These points are illustrated in Figure 8.4.
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Figure 8.4: The kinetic energy and potential energy of a displaced string element
have maxima and minima at the same points in the oscillation; as the element
passes through the origin (top plot), it is at its most stretched (PE maximum), and
it is traveling at its fastest (KE maximum).

8.4.4 Transport of energy and power
As the wave propagates along the string, energy is transported by the moving wave-
front at speed 𝑣. The average energy passing a point on the string in time Δ𝑡 is the
average energy in the segment of length Δ𝑥 = 𝑣Δ𝑡. This means we can rewrite
Equation 8.16:

Δ𝐸av = 1
2𝜇𝜔2𝐴2𝑣Δ𝑡 (8.17)

Since the power transmitted is a rate of change of energy, i.e. Δ𝐸
Δ𝑡 , we can obtain

an expression for the average power transmitted:

Δ𝑃av = d𝐸av
d𝑡 ≈ Δ𝐸av

Δ𝑡 = 1
2𝜇𝜔2𝐴2𝑣 (8.18)

From this result, we can see that both the average energy and average power trans-
mitted are both proportional to 𝐴2; a similar observation as in SHM (Chapter 1).

8.5 Dispersion
We have introduced a number of “velocities” in the context of waves, so it is helpful
to briefly summarise each term.
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• Phase velocity, 𝑣𝑝: This is the velocity of a wave of specific frequency through
a medium, and is the speed at which energy is propagated from one point to
another.

• Particle velocity, 𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒: This is the velocity of a particle of the medium
during its oscillation as it propagates the wave. In a transverse wave, this is
perpendicular to the direction of wave propagation. It is this velocity which
is used to define the impedance (see Section 9.3)

• Group velocity, 𝑣𝑔: A wave pulse of the type shown in Figure 7.3 is typically
composed of a sum of harmonic waves of differing frequencies. The velocity
of this “group” of waves is known as the “group velocity”, however is not
necessarily the same as the phase velocities of the waves within the group. It
is this difference which gives rise to the phenomenon of dispersion.

Any wave pulse (example in Figure 7.3) is comprised of an infinite sum of different
frequencies2. While the pulse itself will have a velocity associated with it (the
“group frequency), the frequencies which make up the wave pulse will not always
travel at the same phase velocity. Indeed it is far more common for them to have
slightly different phase velocities in a given medium; a medium in which this occurs
is known as a dispersive medium.
In a dispersive medium, 𝑣𝑝 is different for every frequency component, and the
group velocity is not equal to the initial phase velocity 𝑣𝑝; i.e. 𝑣𝑔 ≠ 𝑣𝑝. For any
dispersive medium, we can write a relationship between 𝜔 and 𝑘 so that 𝜔 varies as
a function of 𝑘; i.e. 𝜔 = 𝜔(𝑘). This is called the dispersion relation and depends
on the physics of the particular wave phenomena being observed.
In the general case, the group velocity is given by the derivative of the dispersion
relation (Equation 8.19). The proof of this relation is available in some advanced
textbooks, but it is not necessary for this course.

𝑣𝑔 ≡ 𝜕𝑤(𝑘)
𝜕𝑘 (8.19)

For a non-dispersive medium, 𝜔 is directly proportional to 𝑘 (Equation 8.20))

𝑤(𝑘) = 𝑣𝑝𝑘 with 𝑣𝑝 = constant (8.20)

The consequence of this is that, when the function is differentiated according to
the principle in Equation 8.19, we find that 𝑣𝑔 = 𝑣𝑝 (Equation 8.21) as has been
mentioned previously.

𝑣𝑔 ≡ 𝜕𝑤(𝑘)
𝜕𝑘 = d(𝑣𝑝𝑘)

d𝑘 = 𝑣𝑝 (8.21)

2This is a Fourier series; further discussion of this is outwith the scope of this lecture series. For
now, it is sufficient to know that any wave, or wave pulse, can be reconstructed from a weighted
sum of harmonic waves.
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For a dispersive medium however, 𝑣𝑝 becomes a function of 𝑘. If we consider a
simple case where 𝜔 has a linear dependence on k (Equation 8.22) with constant
terms 𝑎 and 𝑏:

𝜔 = 𝑎𝑘 + 𝑏 (8.22)

As before, the phase velocity is still defined as 𝑣𝑝 = 𝜔
𝑘 = 𝑎 + 𝑏

𝑘 , while the group
velocity is found by differentiation (Equation 8.23):

𝑣𝑔 = 𝜕𝑤(𝑘)
𝜕𝑘 = 𝑎 (8.23)

We see that these expressions for the phase velocity 𝑣𝑝 = 𝑎 + 𝑏
𝑘 and the group

velocity 𝑣𝑔 = 𝑎 are different; therefore the envelope of the wave packet will move at
a different speed from the phase velocity of the wave. However, the group velocity
is still the same for all wavenumbers 𝑘.
When 𝜔 is a more general function of 𝑘, the group and phase velocities will each
depend differently on 𝑘. The dependence of the group velocity on 𝑘 means that en-
velope doesn’t move at a single velocity and its components of different wavenumber
(or wavelength) have different velocities, distorting the envelope.
So-called normal dispersion occurs when the group velocity is lower than the phase
velocity (𝑣𝑔 < 𝑣𝑝); this is the most common situation, however it is possible to have
anomalous dispersion in which the group velocity, and hence the energy, travels
faster than the individual waves.
Examples of dispersion include:

• Splitting of light by prism
• Formation of a rainbow
• Phonons propagating through a crystalline solid
• Spreading of light pulses in fibre-optic cables. The dispersion limits the max-

imum length of cable before signal reconditioning is needed.

8.6 Summary
We have covered a large amount of derivations in this chapter, however the take-
home points are the following:
When describing sine waves travelling through a medium, the following statements
apply:

• For a wave travelling to the right: 𝑦 = 𝐴 sin(𝑘𝑥 − 𝜔𝑡)
• For a wave travelling to the left: 𝑦 = 𝐴 sin(𝑘𝑥 + 𝜔𝑡)
• The phase velocity: 𝑣 = 𝜔

𝑘 m s-1

…where:
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• 𝑘 = wavenumber = 2𝜋
𝜆

• 𝜆 = wavelength /m
• 𝜔 = angular frequency = 2𝜋𝑓 /rad m-1

• 𝑓 = frequency /Hz = 1
𝑇

• 𝑇 = period /s
• 𝐴 = amplitude /m

The average energy carried by a wave (per unit length) is given by:

𝜀 = Δ𝐸av
Δ𝑥 = 1

2𝜇𝜔2𝐴2

…and the average power transmitted by the wave is given by:

Δ𝑃av = Δ𝐸av
Δ𝑡 = 1

2𝜇𝜔2𝐴2𝑣
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Chapter 9

Reflection and Transmission
at boundaries

We now turn our attention to what happens to waves and wave pulses when they
encounter boundaries. We define a boundary as the dividing line between regions
with different phase velocity. In the context of imagining our waves moving along
strings, a boundary can exist either between the string and a rigid anchoring point,
or at a point where the two strings join, each with a different mass density (i.e. a
thick string joining to a thin string).
Any wave incident on such a boundary between regions with different phase veloci-
ties will be partly reflected back from the boundary and partly transmitted through
the boundary.
In the case of a boundary between a thick string and a thin string, the phase velocity
𝑣 is related to the tension 𝐹 and the mass density 𝜇 via 𝑣2 = 𝐹

𝜇 ; i.e. heavier strings
will have a lower phase velocity.
Considering reflection/transmission across such a boundary in a purely qualitative
manner:

1. A wave propagating along a thin string towards a boundary with a thicker
string will be reflected from the boundary with inversion, as well as a pro-
portion of the energy transmitted as a wave into the thicker string.

2. A wave propagating along a thick string towards a boundary with a thinner
string will be reflected from the boundary without inversion, as well as a
proportion of the energy transmitted as a wave into the thinner string.

This qualitative outcome is illustrated in Figure 9.1 and Figure 9.2.
If instead we fix a uniform string to an immovable anchor rather than another,
thicker, string, we will get complete reflection of the wave pulse with inversion.
This is akin to saying the anchor has an infinite mass density, 𝜇.
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1 2

1
Figure 9.1: When a wavepulse originates in string 1 (where 𝜇1 ≪ 𝜇2), the wave will
be both reflected with inversion and partially transmitted into string 2 of greater 𝜇.

1 2

1
Figure 9.2: If we reverse the situation with the wavepulse originating in the string
with greater 𝜇 (now 𝜇1 ≫ 𝜇2), the wave is still partially transmitted into string 2,
but the reflection within string 1 is no longer inverted.
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To quantitatively assess these outcomes, we can obtain the reflected and transmitted
amplitudes for harmonic waves by considering the power transmitted through the
string as the wave propagates.

9.1 Power transmitted and reflected at a boundary
The principles of energy conversion state that, as a wave encounters a boundary,
the energy in the incident wave must equal the total energy of the reflected and
transmitted waves. This principle therefore also applies to the total power of the
system, i.e.:

𝑃𝑖 = 𝑃𝑟 + 𝑃𝑡 (9.1)

We can therefore use Equation 8.18 to derive an expression for the power before
and the powers after the wave encounters the boundary (Equation 9.2):

1
2𝜇1𝜔2𝐴2

𝑖 𝑣1 = 1
2𝜇1𝜔2𝐴2

𝑟𝑣1 + 1
2𝜇2𝜔2𝐴2

𝑡 𝑣2 (9.2)

…or, since 𝜔 = 𝑣𝑛𝑘𝑛 and 𝐹 = 𝜇𝑛𝑣2
𝑛 (rearrangements of equations seen previously):

1
2𝐹𝑘1𝜔𝐴2

𝑖 = 1
2𝐹𝑘1𝜔𝐴2

𝑟 + 1
2𝐹𝑘2𝜔𝐴2

𝑡 (9.3)

Note that:
• 𝐴𝑖, 𝐴𝑟 and 𝐴𝑡 are the amplitudes of the incident, reflected and transmitted

waves respectively;
• 𝜇1, 𝑣1, 𝜇2, 𝑣2 refer to the mass per unit length and the phase velocities for

strings 1 and 2 respectively;
• 𝑘1 and 𝑘2 are the wavenumbers for each of the two strings;
• 𝜔 is the same for all waves - this depends only on the source;
• 𝜆 will be different on each string; since 𝜆 = 𝑣

𝑓 = 2𝜋𝑣
𝜔 , i.e. 𝜆 will be smaller

on the heavier string;
• Conversely 𝑘 = 2𝜋

𝜆 will be larger on the heavier string;
• 𝜇 = 𝐹

𝑣2 ; the tension 𝐹 will be the same in both strings.
When we compare the proportion of the incident power which is reflected, we can
show that:

Reflected power
Incident power = 𝑘1𝐴2

𝑟
𝑘1𝐴2

𝑖
= (𝑘1 − 𝑘2

𝑘1 + 𝑘2
)

2
(9.4)

We can also show the proportion of the incident power which is transmitted:
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Transmitted power
Incident power = 𝑘2𝐴2

𝑡
𝑘1𝐴2

𝑖
= 4𝑘1𝑘2

(𝑘1 + 𝑘2)2 (9.5)

Note These results only hold for waves on strings where the tension, 𝐹 , is the same
in both strings. We will discuss a more general result in the next section.

Proof of power ratios
From our expression of the conservation of powers (Equation 9.3), we can cancel
the common terms:

𝑘1𝐴2
𝑖 = 𝑘1𝐴2

𝑟 + 𝑘2𝐴2
𝑡 (9.6)

However, at the interface, the wave must be continuous on both sides; therefore
the amplitude on each side must be the same:

𝐴𝑖 + 𝐴𝑟 = 𝐴𝑡 (9.7)

We now substitute Equation 9.7 into Equation 9.6 to eliminate 𝐴𝑟:

𝑘1𝐴2
𝑖 = 𝑘1(𝐴𝑡 − 𝐴𝑖)2 + 𝑘2𝐴2

𝑡 (9.8)

We can then expand and rearrange this:

𝑘1𝐴2
𝑖 = 𝑘1(𝐴𝑡 − 𝐴𝑖)2 + 𝑘2𝐴2

𝑡
= 𝑘1(𝐴2

𝑡 − 2𝐴𝑡𝐴𝑖 + 𝐴2
𝑖 ) + 𝑘2𝐴2

𝑡
0 = 𝑘1𝐴2

𝑡 − 2𝑘1𝐴𝑡𝐴𝑖 + 𝑘2𝐴2
𝑡

= 𝑘1
𝐴2

𝑡
𝐴2

𝑖
− 2𝑘1

𝐴𝑡
𝐴𝑖

+ 𝑘2
𝐴2

𝑡
𝐴2

𝑖

0 = (𝐴𝑡
𝐴𝑖

)
2

(𝑘1 + 𝑘2) − 2𝑘1
𝐴𝑡
𝐴𝑖

(9.9)

This is a quadratic equation, and we can then say the following; either:

𝐴𝑡
𝐴𝑖

= 0

…which represents total reflection (zero transmission), and not what we would expect
to have with two joined strings, or:

(𝐴𝑡
𝐴𝑖

) = 2𝑘1
𝑘1 + 𝑘2
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…from which we obtain:

𝑘2
𝑘1

(𝐴𝑡
𝐴𝑖

)
2

= 4𝑘1𝑘2
(𝑘1 + 𝑘2)2

…as required in Equation 9.5 for the ratio of transmitted to incident power.
We can obtain the result for Equation 9.4 for ratio of reflected to incident power
in a similar manner by substitution of Equation 9.7)into Equation 9.6 to instead
eliminate 𝐴𝑡.

9.2 Example of reflection and transmission
Consider a wave travelling from a light string to a heavy string, where 𝜇2 = 4𝜇1.
Remember that:

𝜇 = 𝐹
𝑣2 = 𝐹 𝑘2

𝜔2

i.e.
𝑘 ∝ √𝜇

We can therefore determine:
• 𝑘2 = 2𝑘1 via the square-root relationship
• The fraction of power reflected will be:

𝐴2
𝑟

𝐴2
𝑖

= (1 − 2
1 + 2)

2
= 1

9
• The fraction of power transmitted:

𝑘2𝐴2
𝑡

𝑘1𝐴2
𝑖

= (4 × 2 × 1
(1 + 2)2 ) = 8

9

9.3 The impedance of a piece of string
The examples we considered in Section 9.1 were a particular result under constant
tension. We can generalise the result by considering the impedances of the media
on either side of the boundary.
We discussed the concept of impedance (both electrical and mechanical) in Sec-
tion 3.6; however the salient points are:

• “Impedance” describes the property of a system which resists motion, either
mechanical or motion of charge;
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• Any material through which waves propagate presents impedance to those
waves;

• In general, impedance depends on inertia and elasticity;
• For a string, we define impedance as:

𝑍 = transverse force
transverse velocity

i.e. for a given force, a large 𝑍 implies a small velocity and vice versa; * Similar
definitions can be written for longitudinal waves.
We now consider a string which is driven by an oscillating force (Figure 9.3)



F

θ

ƒ

y



1
Figure 9.3: When a wave is driven by an oscillating force at its origin (𝑓), the
element of the string indicated by the dot experiences the tension within the string,
𝐹 , at angle 𝜃 from the direction of propagation.

The driving force on this string is given by the relationship:

𝑓 = −𝑓0 cos 𝜔𝑡 = −𝑓0ei𝜔𝑡

This driving force is negative because 𝑓 points downwards at time 𝑡 = 0.
As this is a wave, the vertical displacement at any point is given by the relationship:

𝑦 = 𝐴ei(𝑘𝑥−𝜔𝑡)

We now consider the tension in the string, 𝐹 , and resolve this in the transverse
direction. At 𝑥 = 0, we assume small angle of 𝜃:

𝑓 = −𝐹 sin 𝜃
≃ −𝐹 tan 𝜃 for small angles
= −𝐹 𝜕𝑦

𝜕𝑥

We can now use the definition of impedance given above (𝑍 = force
velocity ) and the

expressions for the force and velocity:
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𝑍 = 𝑓
𝑣𝑦

= −𝐹 𝜕𝑦
𝜕𝑥 ÷ 𝜕𝑦

𝜕𝑡

We already have expressions for 𝜕𝑦
𝜕𝑥 and 𝜕𝑦

𝜕𝑡 by differentiating the wave equation
𝑦 = 𝐴ei(𝑘𝑥−𝜔𝑡):

𝜕𝑦
𝜕𝑥 = 𝑖𝑘𝐴ei(𝑘𝑥−𝜔𝑡)

𝜕𝑦
𝜕𝑡 = −𝑖𝜔𝐴ei(𝑘𝑥−𝜔𝑡)

Therefore:

𝑍 = −𝐹 × 𝑖𝑘𝐴ei(𝑘𝑥−𝜔𝑡)

−𝑖𝜔𝐴ei(𝑘𝑥−𝜔𝑡)

= 𝐹𝑘
𝜔

Remember also that the phase velocity 𝑣 = 𝜔
𝑘 , so we can also express the impedance

as 𝑍 = 𝐹
𝑣 and 𝑍 = 𝜇𝑣 (because 𝑣2 = 𝐹

𝜇 ), where 𝜇 is the mass per unit length of
the string and 𝐹 is the tension within the string.

9.4 Reflection and transmission revisited
We can now express our previous result of the reflection and transmission coefficients
(derived in Equation 9.9 more generally:
Reflection coefficient:

𝐴𝑟
𝐴𝑖

= 𝑍1 − 𝑍2
𝑍1 + 𝑍2

(9.10)

Transmission coefficient:

𝐴𝑡
𝐴𝑖

= 2𝑍1
𝑍1 + 𝑍2

(9.11)

Writing these in terms of the power (the approach used in Section 9.1), we obtain
the following expressions:

97



Reflected power
Incident power = 𝑍1𝐴2

𝑟
𝑍1𝐴2

𝑖
= (𝑍1 − 𝑍2

𝑍1 + 𝑍2
)

2
(9.12)

and:

Transmitted power
Incident power = 𝑍2𝐴2

𝑡
𝑍1𝐴2

𝑖
= 4𝑍1𝑍2

(𝑍1 + 𝑍2)2 (9.13)

These are general expressions which apply in mechanical, electrical and optical sys-
tems. From them, we can see that:

• If 𝑍2 > 𝑍1, the reflected wave is inverted;
– From Equation 9.10, the term 𝑍1−𝑍2 is negative under these conditions,

leading to a negative amplitude
• If the second string is a “wall” (i.e. immovable, infinite 𝜇)

– 𝑍2 → ∞;
– 𝐴𝑟 = −𝐴𝑖 (by energy conservation);
– 𝐴𝑡 = 0;
– Therefore the wave is fully reflected and inverted.

• If 𝑍2 = 𝑍1 we have:
– Impedance matching;
– No reflection;
– Maximum power transfer.

9.5 Impedance - Miscellaneous cases
For longitudinal (sound) waves, generally we expect the impedance 𝑍 to be
described by 𝑍 = 𝜌0𝑣𝑝, where:

• 𝜌 is the mean density of the medium
• 𝑣𝑝 is the phase velocity of the wave

Example values for longitudinal sound waves are: * Air: ~ 400 kg m-2 s-1 * Water:
1.45 × 106 kg m-2 s-1 * Steel: 3.9 × 107 kg m-2 s-1

For transverse waves on a string, the impedance 𝑍 is described by 𝑍 = 𝜇𝑣𝑝,
where:

• 𝜇 is the mass per unit length
• 𝑣𝑝 is the phase velocity of the wave

For electromagnetic waves, the impedance depends on the medium under consid-
eration:

• In a dielectric medium:

98



𝑍 = √𝜇𝜇0
𝜖𝜖0

where in this case 𝜇 and 𝜖 are the permittivity and the permeability of the medium.
• In free space:

𝑍 = √𝜇0
𝜖0

= 376.6Ω

• For a light wave in a dielectric medium:

𝑍 = 1
𝑛

where 𝑛 is the refractive index of the medium (see later).
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Chapter 10

Sound waves and the Doppler
effect

Textbook link: Tipler and Mosca, Section 15.2-4
As has been mentioned already, sound waves are a longitudinal wave propagated
by the localised displacement of air molecules in the direction of propagation. This
displacement of air molecules within sound waves can be described by the function
shown in Equation 10.1.

𝑠(𝑥, 𝑡) = 𝑠0 sin(𝑘𝑥 − 𝜔𝑡) (10.1)

In contrast to the transverse waves previously discussed, there are now only two
dimensions to this function; while we considered the transverse displacement 𝑦 of
an element of the medium carrying the transverse wave, in this longitudinal wave
the longitudinal displacement 𝑠 is in the 𝑥 direction, i.e. the same direction as the
propagation of the wave.
This displacement of the molecules leads to changes in both the density (𝜌) and the
pressure (𝑝) of the medium. It is worth recognising that both 𝑝 and 𝜌 are out of
phase with the displacement (when the displacement is at a maximum, the pressure
and density are at a minimum):

𝑝 = 𝑝0 sin(𝑘𝑥 − 𝜔𝑡 − 𝜋
2 ) (10.2)

… where the initial pressure 𝑝0 = 𝜌𝜔𝑣𝑠0 and 𝑣 is the phase velocity.
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10.1 Energy of sound waves
When considering the energy of sound waves, we can examine the expression we
already have for transverse waves and adapt this for our longitudinal waves.
Recall that the expression for the energy within a transverse wave is given in Equa-
tion 8.16:

Δ𝐸av = 1
2𝜇𝜔2𝐴2Δ𝑥

To adapt this for longitudinal sound waves, we perform the following substitutions:
• We replace the linear mass density 𝜇 (units kg m-1) with the density of the

medium, 𝜌 (units kg m-3)
• We replace our transverse amplitude 𝐴 with the longitudinal displacement 𝑠0
• To keep units congruent, we replace the change in segment length caused by

the wave Δ𝑥 with the change in segment volume caused by the wave Δ𝑉
Our result is therefore:

Δ𝐸av = 1
2𝜌𝜔2𝑠2

0Δ𝑉 (10.3)

10.2 Wave intensity
We have mentioned that with sound waves we are now considering a three-
dimensional volume. This means we need to consider the effect of this on the
energy of the wave at a distance 𝑟 from its origin. The energy at a given distance
will be spread uniformly over a spherical surface; therefore we need to consider the
power per unit area of this surface. This is the intensity of the wave.

𝐼 = 𝑃av
4𝜋𝑟2 (10.4)

We already know that the average power is defined as the rate of change of the
average energy:

𝑃av = Δ𝐸av
Δ𝑡

We can therefore rewrite Equation 10.4 taking this into account.

𝐼 = Δ𝐸av
4𝜋𝑟2Δ𝑟

Δ𝑟
Δ𝑡

= Δ𝐸av
Δ𝑉 𝑣

(10.5)
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In Equation 10.5 we identify the term Δ𝑟
Δ𝑡 ; this is the speed at which the wave travels

from the centre of the sphere, so is the phase velocity 𝑣. We can also say that the
term 4𝜋𝑟2Δ𝑟 is the rate of change of volume, Δ𝑉 . We now use our expression for
the average energy (Equation 10.3) to simplify this expression:

𝐼 = 1
2𝜌𝜔2𝑠2

0𝑣 = 𝑝2
0

2𝜌𝑣 (10.6)

In other words, the intensity of the sound wave travelling at constant speed 𝑣
through a medium of constant density 𝜌 at a point in space is proportional to the
square of the amplitude of the wave, 𝑝0.

10.3 Levels of intensity
The human ear perceives sounds according to the logarithm of their intensity - not
the absolute value of the intensity.1 To represent an intensity level we use the term
decibel (dB). This intensity level, 𝛽 is represented in Equation 10.7 as follows:

𝛽 = 10 log10 ( 𝐼
𝐼0

) (10.7)

The term 𝐼0 is the absolute intensity considered to be at the absolute limit of human
hearing, where 𝐼0 = 10−12 W m-2. A description of approximate intensity levels is
shown in Table 10.1.

Table 10.1: A description of the approximate decibel level of particular sounds.

𝛽 /dB Description
0 Hearing threshold
40 Library
70 Busy traffic
120 Pain threshold

10.4 The Doppler Effect (non-relativistic)
You have already met the Doppler effect for light in the context of the Special
Relativity course; here we will briefly revisit it in the context of non-relativistic
cases.
The general principles of the Doppler effect are unchanged, namely:

1When you encounter electronics you will find potentiometers labelled “audio taper”; this de-
scribes their use in audio applications in which the resistance is a logarithmic response to accom-
modate our logarithmic perception of sound.
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• If the source and observer move relative to each other, the observed frequency
is different from the emitted frequency;

• When the source and observer move towards each other, 𝑓obs > 𝑓source;
• When the source and observer move away from each other, 𝑓obs < 𝑓source;
• The frequency change, Δ𝑓 , depends on whether the source or observer move

relative to each other.
Consider a source moving relative to its surrounding medium at a speed of 𝑢𝑠. We
can visualise this as a moving ‘dipper’ in a pool of water (Figure 10.1)

Figure 10.1: When a dipper (marked by the black dot) moves relative to the water,
we see that the wavefronts ‘bunch’ in the direction of motion and diverge behind
the motion of the dipper.

This is a visual representation of a number of key statements:
• The speed of waves 𝑣 in the medium is independent of the movement of the

source;
• The source produces waves at a frequency 𝑓0;
• In a given time frame, Δ𝑡, the source will emit 𝑁𝑠 wavefronts, where:

𝑁𝑠 = 𝑓0Δ𝑡
{#eq-}

From these statements, we can calculate the observed wavelength, 𝜆′, by considering
the relative distance traveled by the wave in a given time-frame and the number of
waves produced by the source in that time-frame (Equation 10.8):
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Figure 10.2: We can look at this in more detail by showing where the dipper was
for each of the spreading wavefronts. Here the dipper is moving forward at speed
𝑢𝑟, while the wavefronts spread out from their point of origin at speed 𝑣.
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𝜆′ = relative distance
no. of waves = (𝑣 ± 𝑢𝑠)Δ𝑡

𝑓0Δ𝑡 (10.8)

We can now consider two extremes; the observed wavelength in front of the source
(to the right in the diagram), and the observed wavelength behind the source (to
the left in the diagram):

𝜆′
behind = 𝑣 + 𝑢𝑠

𝑓0
𝜆′

in front = 𝑣 − 𝑢𝑠
𝑓0

(10.9)

We can now determine the frequency observed by using these expressions for the
wavelength. Firstly, we determine the number of wavefronts passing the observer in
the time frame Δ𝑡:

𝑁obs = 𝑣obsΔ𝑡
𝜆′ (10.10)

…where 𝑣obs is the speed of the waves relative to the observer; i.e. 𝑣obs = 𝑣 ± 𝑢obs
; where 𝑢obs corresponds to the observer moving to the right in the diagram (as
this reduces the relative velocity between the observer and the wave). We can now
rewrite the expression in Equation 10.10 in terms of the phase velocity 𝑣 and the
relative speed of the observer, 𝑢obs:

𝑁obs = (𝑣 ± 𝑢obs)Δ𝑡
𝜆′ (10.11)

…and finally we have the observed frequency 𝑓 ′ of a source in motion:

𝑓 ′ = 𝑁obs
Δ𝑡 = 𝑣 ± 𝑢obs

𝜆′ (10.12)

When we combine this with the equation for 𝜆′, we obtain the general result (Equa-
tion 10.13)

𝑓 ′ = (𝑣 ± 𝑢obs
𝑣 ± 𝑢𝑠

) 𝑓0 or 𝑓 ′ = (1 ± 𝑢obs
𝑣

1 ± 𝑢𝑠
𝑣

) 𝑓0 (10.13)

It is important to pay attention to the signs when using the above equations; it can
be easy to confuse the positive directions. The sign convention can help with this:

• The direction from the observer towards the source is positive
You can check your results using the principles:

• The observed frequency 𝑓 ′ increases when the source and observer approach
each other;
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• The observed frequency 𝑓 ′ decreases when the source and observer move
apart.
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Chapter 11

Superposition and Standing
Waves

Textbook link: Tipler and Mosca, Section 15.1

11.1 Superposition of harmonic waves
In Section 7.1) we showed that the wave equation (Equation 7.3) is satisfied by
any function in the form 𝑦 = 𝑓(𝑥 ± 𝑣𝑡). We can go further than this, and specify
general expressions which can satisfy the wave equation.
Specifically, if we have two functions, 𝑦1 and 𝑦2 (Equation 11.1), which satisfy the
wave equation, then their sum (Equation 11.2), including scaling constants 𝐶1 and
𝐶2) must also satisfy the wave equation.

𝑦1 = 𝐴1 sin [𝑘1(𝑥 ± 𝑣𝑡)]
𝑦2 = 𝐴2 sin [𝑘2(𝑥 ± 𝑣𝑡)] (11.1)

𝑦3 = 𝐶1𝑦1 + 𝐶2𝑦2 (11.2)

Using double angle formulae we can demonstrate that 𝑦3 can also be written in the
form 𝑦 = 𝑓(𝑥 ± 𝑣𝑡), thus satisfying the wave equation.1 Therefore, the new wave
𝑦3 is a linear superposition of the original waves 𝑦1 and 𝑦2.
It is worth remembering that the wave equation was derived in the case of small
amplitude disturbances; therefore if the vibration amplitudes become too large, the

1When including scaling factors, this can become less than trivial, but can still be done.
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principle of superposition may fail. This can lead to some very interesting effects,
including non-linear optics2

11.2 Two waves with same amplitude and frequency
Let’s now consider two waves with the same amplitude and frequency; but differing
in phase (Equation 11.3):

𝑦1 = 𝑦0 sin(𝑘𝑥 − 𝜔𝑡)
𝑦2 = 𝑦0 sin(𝑘𝑥 − 𝜔𝑡 + 𝛿) (11.3)

If the two waves are superimposed, for example if they are travelling through the
same medium, the resultant wavefunction is just the sum of 𝑦1 and 𝑦2 (Equa-
tion 11.4):

𝑦 = 𝑦1 + 𝑦2
= 𝑦0 sin(𝑘𝑥 − 𝜔𝑡) + 𝑦0 sin(𝑘𝑥 − 𝜔𝑡 + 𝛿) (11.4)

In many situations it is mathematically simpler to use the complex exponential
notation to treat waves and oscillations. However, in the case of a linear addition
of two waves, it is simpler to just use trigonometric identities.
Here we will use the identity:

sin 𝜃1 + sin 𝜃2 = 2 sin (𝜃1 + 𝜃2
2 ) cos (𝜃1 − 𝜃2

2 )

… we obtain:

𝑦 = 2𝑦0 sin (𝑘𝑥 − 𝜔𝑡 + 𝛿
2) cos (−𝛿

2 ) (11.5)

As an aside, we can do the same thing with complex notation; we can write our
wave superposition as follows:

𝑦 = 𝑦1 + 𝑦2 = 𝑦0𝑒𝑖(𝑘𝑥−𝜔𝑡) + 𝑦0𝑒𝑖(𝑘𝑥−𝜔𝑡+𝛿)

Remembering that we are interested in the ‘imaginary’ component at the end since
we started with 𝑦1 and 𝑦2 as sine waves, we can write this superposition as:

𝑦 = 𝑦0𝑒𝑖(𝑘𝑥−𝜔𝑡) (1 + ei𝛿)

2Related to the non-linear response of the electromagnetic interactions with the medium, rather
than light travelling in straight lines!
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Figure 11.1: We can illustrate addition of complex numbers on an Argand diagram;
here we show the sum (1 + ei𝛿); the result of this is the argument is halved from 𝛿
to 𝛿

2 .

We can show using an Argand diagram (Figure 11.1) that the term (1+ei𝛿) is equal
to 2 cos ( 𝛿

2) 𝑒𝑖 𝛿
2 , and hence:

𝑦 = 2𝑦0 cos(𝛿/2)𝑒𝑖(𝑘𝑥−𝜔𝑡+𝛿/2)

When we expand this expression using De Moivre’s theorem, we obtain the same
result as in Equation 11.5:

𝑦 = 2𝑦0 cos (𝛿
2)⏟⏟⏟⏟⏟

New amplitude

sin (𝑘𝑥 − 𝜔𝑡 + 𝛿
2)⏟⏟⏟⏟⏟⏟⏟⏟⏟

Travelling wave

(11.6)

This tells us that the resulting wave has the same frequency as the component
waves, but a different amplitude and phase. This new amplitude is given by the
expression in Equation 11.7:

𝐴new = 2𝑦0 cos (𝛿
2) (11.7)

There are three special cases to be aware of:
1. If 𝛿 = 0, the waves are exactly in phase and the waves add together (con-

structive interference), with amplitude 𝐴 = 2𝑦0;
2. If 𝛿 = 𝜋, the waves are exactly out of phase and the waves subtract (destruc-

tive interference), and the amplitude 𝐴 = 0;
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3. If 𝛿 = 2𝜋
3 , the resultant wave has exactly the same amplitude as the input

waves.
All three of these cases can be derived by substituting the relevant value of 𝛿 into
Equation 11.7).

11.2.1 Phasors
The process we have shown above is a specific case of using phasors to determine
an amplitude of a superposition of waves. The general method for determining the
superposition of a number of waves of the same frequency - regardless of amplitude
or relative phase - is shown as follows.
For a series of waves (Equation 11.8), each with its own amplitude 𝐴𝑛 and relative
phase 𝛿𝑛, we can determine a superposition by summing them together.

⎧{
⎨{⎩

𝑦1 = 𝐴1𝑒𝑖(𝑘𝑥−𝜔𝑡+𝛿1)

𝑦2 = 𝐴2𝑒𝑖(𝑘𝑥−𝜔𝑡+𝛿2)

𝑦3 = 𝐴3𝑒𝑖(𝑘𝑥−𝜔𝑡+𝛿3)
(11.8)

The summation is straightforward:

𝑦total = 𝑦1 + 𝑦2 + 𝑦3
= 𝐴1𝑒𝑖(𝑘𝑥−𝜔𝑡+𝛿1) + 𝐴2𝑒𝑖(𝑘𝑥−𝜔𝑡+𝛿2) + 𝐴3𝑒𝑖(𝑘𝑥−𝜔𝑡+𝛿3)

= (𝐴1𝑒𝑖𝛿1 + 𝐴2𝑒𝑖𝛿2 + 𝐴3𝑒𝑖𝛿3) 𝑒𝑖(𝑘𝑥−𝜔𝑡)
(11.9)

By taking out a common factor of 𝑒𝑖(𝑘𝑥−𝜔𝑡) from the superposition, we have isolated
the variable “wave component” (𝑒𝑖(𝑘𝑥−𝜔𝑡)) from the invariant (constant) compo-
nent, ((𝐴1𝑒𝑖𝛿1 + 𝐴2𝑒𝑖𝛿2 + 𝐴3𝑒𝑖𝛿3)). This ‘invariant’ component is the amplitude
of the new superposition, and thus we have expressed our superposition as the
original wave - with a ‘zero phase’ offset - and an amplitude.
As the new amplitude is a sum of complex numbers, we can visualise these on an
Argand diagram (Figure 11.2)
This method will work for any values of 𝛿 and any amplitudes 𝐴, provided the
frequency 𝜔 and wavenumber 𝑘 of the superposed waves is constant.

11.3 Two waves, same amplitude, different fre-
quency (Beats)

Let’s consider two waves with the same amplitude but differing in frequency (i.e.
amplitude 𝑦0 is common to both, each has independent frequency 𝜔1 and 𝜔2). For
convenience we will assume that the phase difference between the two is zero at time
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1Figure 11.2: The amplitude component of a wave superposition can be represented
on an Argand diagram, where the total amplitude can be determined as the resultant
of the sum of the complex amplitudes.

𝑡 = 0, and we will then consider their displacements at an arbitrary 𝑥 coordinate
(e.g. 𝑥 = 0).
Firstly, let’s lay out the mathematical description of each wave:

𝑦1 = 𝑦0 sin 𝜔1𝑡 and 𝑦2 = 𝑦0 sin 𝜔2𝑡 (11.10)

We can now obtain an expression for the overall observed amplitude, 𝑦 = 𝑦1 + 𝑦2,
and use the standard trigonometric identities3 to combine the two equations:

𝑦 = 𝑦1 + 𝑦2
= 𝑦0 sin 𝜔1𝑡 + 𝑦0 sin 𝜔2𝑡
= 2𝑦0 cos (𝜔1 − 𝜔2

2 𝑡) sin (𝜔1 + 𝜔2
2 𝑡)

(11.11)

As an aside, we can achieve the same result by using complex exponentials where
the sum of the two waves is given in Equation 11.10, where we are interested in the
imaginary component since we started with sine waves:

𝑦 = 𝑦0ei𝜔1𝑡 + 𝑦0ei𝜔2𝑡 (11.12)

These can be added on an Argand diagram to show the result in Equation 11.13:
3Here we use the sum-to-product identity sin 𝐴 + sin 𝐵 = 2 cos ( 𝐴−𝐵

2 ) sin ( 𝐴+𝐵
2 )

111



𝑦 = 𝑦0𝑟ei𝜃 (11.13)

…where:

𝑟 = 2 cos (𝜔1𝑡 − 𝜔2𝑡
2 ) and 𝜃 = 𝜔1𝑡 + 𝜔2𝑡

2

Our end result if we expand this complex representation is:

𝑦 = 2𝑦0 cos (𝜔1𝑡 − 𝜔2𝑡
2 ) ei( 𝜔1𝑡+𝜔2𝑡

2 )

As we said above, we are interested in the ‘imaginary’ (sine) component, and we end
up with the same result as shown in Equation 11.11. We can simplify the expression
as in Equation 11.14.

𝑦 = 2𝑦0 cos (Δ𝜔
2 𝑡)⏟⏟⏟⏟⏟⏟⏟

slowly varying amplitude

sin 𝜔𝑎𝑣𝑡⏟
wave with average frequency

(11.14)

…where Δ𝜔 = 𝜔1 − 𝜔2.
The frequency fo the resulting wave is the average of the two input waves, while
the amplitude oscillates with frequency Δ𝜔

2 . This is known as beating. The actual
frequency of the beats themselves is twice this, as shown in Figure 11.3.
Therefore, if the frequency of the slowly varying amplitude is Δ𝜔

2 , the observed
frequency of the ‘beats’ will be twice this; i.e. the difference in frequency between
the two sources.
Repeating the analysis above but with the full expressions for the two sine waves
(i.e. 𝑦𝑛 = 𝑦0 sin(𝑘𝑥 − 𝜔𝑡)), we obtain the expression in Equation 11.15:

𝑦 = 2𝑦0 cos (Δ𝑘𝑥 − Δ𝜔𝑡
2 ) ⋅ sin(𝑘av𝑥 − 𝜔av𝑡) (11.15)

From Equation 11.15 we find there are two velocities to consider; the phase velocity
of the “average” wave, and the phase velocity of the “envelope” (the waveform
which describes the amplitude; see Figure 11.3). These are laid out below:
The phase velocity of the “average” wave:

𝑣𝑎𝑣 = 𝜔𝑎𝑣
𝑘𝑎𝑣

The phase velocity of the envelope:
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Figure 11.3: As two waves interfere with each other (𝑓1 = 3.0 Hz; 𝑓2 = 3.2 Hz),
we see the interference structure as a waveform of frequency 3.1 Hz with a slowly
varying amplitude at frequency 0.1 Hz (the ‘envelope’). This visualises the ‘beats’
in the interference structure.

𝑣𝑒𝑛𝑣 = Δ𝜔
Δ𝑘

In a non-dispersive medium (i.e. all frequencies travel with the same phase velocity),
it can be shown that 𝑣av = 𝑣env = 𝜔1

𝑘1
= 𝜔2

𝑘2
= the phase velocity of the medium.

However, in a dispersive medium, the velocities are not equal, i.e. 𝑣𝑎𝑣 ≠ 𝑣𝑒𝑛𝑣, and
the “envelope” propagates at a different speed to the individual components. We
associate 𝑣𝑒𝑛𝑣 with the group velocity 𝑣𝑔 and in this case would be represented as:

𝑣𝑔 = Δ𝜔
Δ𝑘

11.4 Standing waves
A standing wave is a specific outcome which occurs when a wave is confined to
space (for example on a piano string) and it reflects at the boundaries and travels
back along its original path. This leads to waves travelling in both directions which
combine by superposition. Only certain frequencies can exist in a standing wave, as
the superposition leads to a stationary pattern called a standing wave.
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11.5 Wave function for a standing wave
In order to fully consider a standing wave, we need to derive the form of its wave-
function. To do this, we consider two waves travelling in opposite directions along a
string (Equation 11.16). Because one is a reflection of the other (they each reflect
from the boundaries), they will have the same frequency and phase.

𝑦1 = 𝑦0 sin(𝑘𝑥 − 𝜔𝑡)
𝑦2 = 𝑦0 sin(𝑘𝑥 + 𝜔𝑡) (11.16)

The resultant vertical displacement of the string is then the sum of these two waves
(Equation 11.17):

𝑦 = 𝑦1 + 𝑦2
𝑦 = 𝑦0 sin(𝑘𝑥 − 𝜔𝑡) + 𝑦0 sin(𝑘𝑥 + 𝜔𝑡) (11.17)

We can add these directly using a trigonometric identify or we can work in the
complex notation:

𝑦 = 𝑦0 sin(𝑘𝑥 − 𝜔𝑡) + 𝑦0 sin(𝑘𝑥 + 𝜔𝑡)
= 𝑦0ei(𝑘𝑥−𝜔𝑡) + 𝑦0ei(𝑘𝑥+𝜔𝑡)

= 𝑦0ei𝑘𝑥 (e−i𝜔𝑡 + ei𝜔𝑡)
(11.18)

We can use either an Argand diagram or De Moivre’s theorem to show that the
term (e−i𝜔𝑡 + ei𝜔𝑡) = 2 cos 𝜔𝑡, and hence:

𝑦 = 2𝑦0 cos 𝜔𝑡ei𝑘𝑥

We can now expand the complex exponent using De Moivre’s theorem again and,
remembering we are interested in the ‘imaginary’ component (as this contains the
desired sine function), and we obtain the result in Equation 11.19:

𝑦 = 2𝑦0 cos 𝜔𝑡⏟⏟⏟⏟⏟
time-dependent amplitude

sin 𝑘𝑥⏟
static wave

(11.19)

This result describes a static wave, 𝑦 = sin 𝑘𝑥 whose amplitude varies in time as
𝐴 = 2𝑦0 cos 𝜔𝑡. Note that it is possible to obtain this result via a trigonometric
identity also.
This standing wave is illustrated in Figure 11.4; but we notice that there are bound-
ary conditions enforced; namely that the ends of the string are fixed at a constant,
zero displacement; i.e.:

• 𝑦 = 0 at 𝑥 = 0, and:
• 𝑦 = 0 at 𝑥 = 𝐿 at all times 𝑡
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Figure 11.4: A standing wave is the result of two waves equal in frequency and
amplitude moving past each other. This forms a static wave whose amplitude
varies in time, and has nodes (N) and antinodes (A) present in the waveform. Here
we show the fifth harmonic; 5 antinodes and a wavelength 𝜆 = 2/5 = 0.8.

…where 𝐿 is the length of the string. From this we deduce that sin 𝑘𝐿 = 0 and
therefore there are a family of solutions for 𝑘 and 𝜆, known as harmonics.

• If sin 𝑘𝐿 = 0, then 𝑘𝐿 = 0, 𝜋, 2𝜋, …, or 𝑘𝑛𝐿 = 𝑛𝜋
• Additionally, 𝜆𝑛 = 2𝜋

𝑘𝑛
= 2𝐿

𝑛 where 𝑛 = 1, 2, 3, …
In other words, the vibrational modes are quantised due to the boundary conditions.

11.6 Waves on strings fixed at both ends
We have described the mathematics of standing waves; let’s now apply this to a
wave travelling on a string which is fixed at both ends. Figure 11.5 illustrates the
fundamental wavelength of the string, which corresponds to twice the length of the
string.
We can then visualise the harmonics within the standing wave on this fixed string
in Figure 11.6:
The modes of vibration (resonances) shown in Figure 11.6 illustrate the occurrence
of nodes (points which do not move) and antinodes (points with the maximum
vibration amplitudes). Note also that the end-points of the string must be nodes
as well, as these points are fixed.
In general, the 𝑛th harmonic will have 1

𝑛× wavelength and 𝑛× the frequency of the
fundamental vibration shown in Figure 11.5.
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Figure 11.5: The fundamental frequency, or first harmonic. This is one half-
wavelength enclosed in the boundaries and has a single antinode.

Table 11.1: Showing the variation of wavelength and frequency of each harmonic
with respect to the first (fundamental) wave.

Harmonic 𝜆 𝑓
Fundamental, first 2𝐿 𝑓1
Second 𝐿 2𝑓1
Third 2𝐿

3 3𝑓1
Fourth 𝐿

2 4𝑓1
Fifth 2𝐿

5 5𝑓1
𝑛th 2𝐿

𝑛 𝑛𝑓1

In general, for the 𝑛th harmonic:
• Wavelength is given by 𝜆𝑛 = 2𝐿

𝑛
• Frequency is given by 𝑓 = 𝑛𝑓1 = 𝑛𝑣

𝜆1
= 𝑛𝑣

2𝐿

…where 𝑣 is the phase velocity (the speed of propagation of the wave along the
string).
The resonant frequencies, or harmonics, of the string are known as its natural
frequencies. Any string will resonate with maximum amplitude when excited with
these frequencies, and this set of harmonics are known as a harmonic series. The
actual harmonics heard when the string is excited will depend on the manner of its
excitation; e.g. a string plucked at its centre will only display the odd harmonics;
i.e. those with an anti-node in the centre.
In stringed instruments (violin, piano, guitar etc.) the vibration of the string is
amplified by a mechanical resonator; a soundboard in the case of the piano, or
resonant cavities for a guitar or violin. These resonators must be carefully designed
to resonate equally well over a wide range of frequencies.
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Figure 11.6: The second, third, fourth and fifth harmonics of a standing wave on a
string. Notice that the 𝑛th harmonic has 𝑛

2 wavelengths contained in the space.
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11.7 Organ pipes and other wind instruments
In contrast to a vibrating string, wind instruments rely on a resonance within a
column of air. We can model these pipes as a simple pipe, resonating at its natural
frequencies when air is blown into (or across) an opening at one end. The resonant
behaviour will differ depending on whether the other end of the pipe is open or
closed. We will consider each of these cases in turn.

11.7.1 Pipes open at both ends
In this model, the column of air is able to vibrate at its ends, so we have a sim-
ilar set of harmonics as for a string, but with displacement antinodes at its ends
(the air can vibrate freely at the ends of the tube). There is a second set of
nodes/antinodes corresponding to the pressure; these do not align with the dis-
placement nodes/antinodes; rather a pressure node aligns with a displacement
antinode and vice versa. (if an air molecule does not move, we have a displace-
ment node, but it is continuously ‘squashed’ from both sides by the oscillating air
molecules, so experiences the biggest pressure change).

N N N N NA A A A A A

Figure 11.7: This image shows the node/antinode structure of a standing wave
in a closed tube. Note the presence of a displacement node at either end where
molecules are compressed against the end of the tube.

We observe all harmonics in this system; there are no concerns about ‘position of
plucking’ that there is for the string. The displacement of the air molecules extends
a little beyond the ends of the tube, so the effective length is given by 𝐿eff = 𝐿+Δ𝐿,
where Δ𝐿 is a small end correction. Therefore:

𝜆𝑛 = 2𝐿eff
𝑛 and 𝑓𝑛 = 𝑛𝑣

2𝐿eff

11.7.2 Pipe closed at one end
We now have a different situation with different boundary conditions:

• There must be a displacement node at the closed end
• There must be a displacement antinode at the open end

This now gives us a fundamental wavelength four times longer than the effective
length of the tube (the shortest node-antinode separation is a quarter wavelength).
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This means that we only observe the odd harmonics (the even harmonics would not
allow the boundary conditions for this tube).

N N N N NA A A A A A

Figure 11.8: For a tube open at one end, the standing waves now have a node
at the closed end, and an antinode at the open end. This changes the available
harmonics within the tube.

𝜆𝑛 = 4𝐿eff
𝑛 𝑛 = 1, 3, 5, …

𝑓𝑛 = 𝑛𝑣
4𝐿eff

𝑛 = 1, 3, 5, …
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Chapter 12

Mathematical Toolkit

Through the course of the material we have covered, there are a number of math-
ematical tools we have used in order to explore the physics. It is not the intention
of this course to rigourously teach the mathematics, however it is helpful to see
the maths that we are using and the manner in which we use it, distinct from any
abstract “pure mathematical” setting.

12.1 Complex numbers
We can greatly simplify the mathematics by using complex numbers in our deriva-
tions. While the idea of a “complex number” sounds … complex, the use of these
numbers becomes straightforward as we apply our familiar mathematical techniques.
In the context of mathematics, the term complex simply means ‘more than one
part’; therefore, a complex number is a number with more than one part. It is this
two-component nature of a complex number which makes them so useful in many
aspects of Physics, and particularly when describing wave behaviour.

12.1.1 Overview of complex numbers
The general form of a complex number 𝑧 is shown in Equation 12.1:

𝑧 = 𝑎 + i𝑏 (12.1)

The symbol 𝑧 is a general term for a complex number, and has two components, a
“real” component 𝑎 and an “imaginary” component, 𝑏. The imaginary number, i,
is defined using the process shown in Equation 12.2:

120



𝑥2 = −1
𝑥 = ±i
𝑖2 = −1

(12.2)

The terms ‘real’ and ‘imaginary’ are nothing more than labels. Neither is any more
or less “realistic” than the other nor is it any less valid. Some may claim that the
number i is a ‘pretend’ number; however were this to be true, it would not be as
useful as it is!1.
The next useful concept to recall is the complex conjugate, 𝑧∗. This is defined as
in Equation 12.3:

𝑧 = 𝑎 + i𝑏
𝑧∗ = 𝑎 − i𝑏

𝑧𝑧∗ = 𝑎2 + 𝑏2
(12.3)

In general, for any complex number of the form 𝑧 = 𝑎 ± i𝑏, there exists its complex
conjugate, 𝑧∗ = 𝑎 ∓ i𝑏 such that 𝑧𝑧∗ is a wholly real number and equal to 𝑎2 + 𝑏2.
The complex conjugate is particularly useful when finding fractions of complex num-
bers as it is used to make the denominator of the fraction wholly “real”.

Useful results with complex numbers

For a pair of complex numbers, 𝑧1 and 𝑧2:

𝑧1 = 𝑎1 + i𝑏1
𝑧2 = 𝑎2 + i𝑏2

(12.4)

…we can establish the following principles:
• Equality:

If 𝑎1 = 𝑎2 and 𝑏1 = 𝑏2 then 𝑧1 = 𝑧2

• Addition and subtraction:

𝑧1 + 𝑧2 = (𝑎1 + 𝑎2) + i(𝑏1 + 𝑏2)
𝑧1 − 𝑧2 = (𝑎1 − 𝑎2) + i(𝑏1 − 𝑏2)

• Products:

𝑧1 × 𝑧2 = (𝑎1 + i𝑏1)(𝑎2 + i𝑏2)
= (𝑎1𝑎2 − 𝑏1𝑏2) + i(𝑎1𝑏2 + 𝑎2𝑏1)

• Reciprocal:

1Remember that negative numbers were once seen as ‘pretend numbers’, as you could not
have negative eight apples. They have since become indispensable in many applications, not least
financial transactions!
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1
𝑧 = 𝑧∗

𝑧𝑧∗ = 𝑎 − i𝑏
𝑎2 + 𝑏2

• Division:

𝑧1
𝑧2

= 𝑧1𝑧∗
2

𝑧2𝑧∗
2

= (𝑎1𝑎2 + 𝑏1𝑏2) − i(𝑎1𝑏2 − 𝑎2𝑏1)
𝑎2

2 + 𝑏2
2

Applications of the complex conjugate

(𝑧1 + 𝑧2)∗ = 𝑧∗
1 + 𝑧∗

2
(𝑧1𝑧2)∗ = 𝑧∗

1𝑧∗
2

(𝑧1
𝑧2

)
∗

= 𝑧∗
1

𝑧∗
2

𝑎 = Re(𝑧) = 1
2(𝑧 + 𝑧∗)

𝑏 = Im(𝑧) = 1
2(𝑧 − 𝑧∗)

(12.5)

12.1.2 The Argand Diagram
Since a complex number consists of two independent components, we have another
way to describe these numbers. Complex numbers can be plotted on a graph,
with the ‘real’ component plotted on one axis (the 𝑥-axis) and the ‘imaginary’
component plotted on the other axis (the 𝑦-axis). This is the basis of the Argand
diagram (Figure 12.1).
This allows us to define a complex number in terms of a modulus (radial distance
from the origin) and an argument (angle from the ‘real’ axis). Useful properties of
the modulus are listed in Equation 12.6:

|𝑧∗| = |𝑧|
𝑧𝑧∗ = |𝑧2|

|𝑧1𝑧2| = |𝑧1||𝑧2|
| 𝑧1
𝑧2

| = |𝑧1|
|𝑧2|

|𝑧1 + 𝑧2| ≠ |𝑧1| + |𝑧2|

(12.6)

The Argand diagram is a representation of the complex plane, through which it
becomes possible to visualise properties of complex numbers. One example of this
is the addition of complex numbers; these can be considered to behave as vectors
(Figure 12.2)
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Figure 12.1: A typical Argand diagram, showing the Real (‘Re’) axis and the Imagi-
nary (‘Im’) axis. The point 𝑃 can be defined in ‘𝑥, 𝑦’ terms (the ‘complex number’),
or can be defined as polar ‘𝑟, 𝜃’ terms (termed ‘modulus’ and ‘argument’)
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Figure 12.2: Addition of complex numbers 𝑧1 and 𝑧2 can be shown grapically on an
Argand diagram; the separate consideration of the ‘real’ and ‘imaginary’ components
is analogous to the separate consideration of vector components.
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12.1.3 Polar representation of complex numbers
As well as the Cartesian interpretation of the Argand diagram, we can also con-
sider a polar representation of a complex number; where instead of “real” and
“imaginary” components acting as (𝑥, 𝑦) coordinates, we define the position of the
complex number on the complex plane as a radius and an angle, 𝜃. We have already
illustrated this in Figure 12.1
In this representation, the complex number can be expressed a different way:

𝑧 = 𝑎 + i𝑏
𝑟 = |𝑧| =

√
𝑎2 + 𝑏2

𝑎 = 𝑟 cos 𝜃 𝑏 = 𝑟 sin 𝜃 𝜃 = arg(𝑧) = arctan ( 𝑏
𝑎)

𝑧 = 𝑟 cos 𝜃 + i|𝑧| sin 𝜃

Normally, 𝜃 will lie in the range such that −𝜋 < 𝜃 ≤ 𝜋, meaning that our complex
number representation is now shown in Equation 12.7:

𝑧 = 𝑎 + i𝑏 = 𝑟 cos 𝜃 + i𝑟 sin 𝜃
𝑧 = 𝑟 (cos 𝜃 + i sin 𝜃) (12.7)

12.1.4 Exponential representation of complex numbers
The exponential representation of a complex number takes the general form of
𝑧 = 𝐴𝑒i𝜃. This is based on series expansions of cos 𝜃 and i sin 𝜃, which shows De
Moivre’s theorem. Key results from this are shown in Equation 12.8:

ei𝜃 = cos 𝜃 + i sin 𝜃
(ei𝜃)𝑛 = (cos 𝜃 + i sin 𝜃)𝑛 = ei𝑛𝜃

(cos 𝜃 + i sin 𝜃)𝑛 = cos 𝑛𝜃 + i sin 𝑛𝜃
(12.8)

This means that we obtain the following representations for complex numbers:

𝑧 = 𝑟 (cos 𝜃 + i sin 𝜃) = 𝑟ei𝜃

𝑧∗ = 𝑟 (cos 𝜃 − i sin 𝜃) = 𝑟e−i𝜃

where: 𝑟 = |𝑧| 𝜃 = arg(𝑧)

Combining these with Equation 12.5 we also note the following useful results (Equa-
tion 12.9)

cos 𝜃 = 1
2 (ei𝜃 + e−i𝜃)

sin 𝜃 = 1
2i (ei𝜃 − e−i𝜃) (12.9)
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12.1.5 Complex representation of oscillations
Having quickly readdressed our understanding of complex numbers, we now turn
our attention to the application of these in the context of oscillations and waves.
Consider the general equation of SHM (Equation 12.10), derived from Equation 1.8)

d2𝑢
d𝑡2 + 𝜔2𝑢 = 0 (12.10)

As has been previously discussed, sinusoidal functions can form the basis of solutions
to this differential equation; so both cos 𝜔𝑡 and sin 𝜔𝑡 are solutions to this equation.
Therefore, any linear combination of these solutions will also be a solution, i.e. the
linear combination shown here:

𝑢 = 𝑐1 cos 𝜔𝑡 + 𝑐2 sin 𝜔𝑡

… will also satisfy Equation 12.10. This can be extended using De Moivre’s theorem
(Equation 12.8) allowing an exponential representation of an oscillation as shown
in Equation 12.11:

𝑢 = 𝐴(cos 𝜔𝑡 + i sin 𝜔𝑡) ≡ 𝐴ei𝜔𝑡 (12.11)

Therefore the solution 𝑢 = 𝐴ei𝜔𝑡 represents an oscillation with amplitude 𝐴 and
frequency 𝜔

12.1.6 Take-home points
• We can always represent an oscillation using a complex exponential function
• To obtain the actual physical displacement of the system we simply examine

either the real or the imaginary part of the solution:

Either: displacement = Re(𝑢) = 𝐴 cos 𝜔𝑡
or: displacement = Im(𝑢) = 𝐴 sin 𝜔𝑡

The main advantage of working with complex exponentials is that they are consid-
erably easier to manipulate than the trigonometric functions sine and cosine. In
general it is far easier to use this exponential notation when multiplying oscilla-
tions (such as you will explore in electrical circuits later). However, when adding
oscillations or waves you may find it easier using a trigonometric identity.
You should be comfortable using either approach to represent an oscillation.
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